×

zbMATH — the first resource for mathematics

Quelques généralisations de l’équation de Korteweg-de Vries. II. (French) Zbl 0435.35067

MSC:
35Q99 Partial differential equations of mathematical physics and other areas of application
35A05 General existence and uniqueness theorems (PDE) (MSC2000)
34G10 Linear differential equations in abstract spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bardos, C, A regularity theorem for parabolic equations, J. functional analysis, 7, 311-322, (1971) · Zbl 0214.12302
[2] Benney, D.J, A general theory for interactions between short and long waves, Studies in appl math., 56, 81-94, (1977) · Zbl 0358.76011
[3] Bona, J; Smith, R.S, The initial value problem for the Korteweg-de Vries equation, Philos. trans. roy. soc. London ser. A, 278, 1287, 555-604, (1975) · Zbl 0306.35027
[4] Dubrovin, B.A; Matveev, V.B; Novikov, S.P, Nonlinear equations of Korteweg-de Vries type, finite-zone linear operators, and abelian varieties, Russian math. surveys, 31, 1, 59-146, (1976) · Zbl 0346.35025
[5] Gardner, C.S, Korteweg-de Vries equation and generalizations IV: the Korteweg-de Vries equations as a Hamiltonian system, J. math. and phys., 12, 8, 1548-1551, (1971) · Zbl 0283.35021
[6] Gardner, C.S; Kruskal, M.D; Miura, R.M; Zabusky, N.J, Korteweg-de Vries equation and generalizations V: uniqueness and non-existence of polynomial conservation laws, J. math. and phys., 11, 3, 952-960, (1970) · Zbl 0283.35022
[7] Gardner, C.S; Greene, J.M; Kruskal, M.D; Miura, R.M, Korteweg-de Vries equation and generalizations. VI. methods for exact solutions, Comm. pure appl. math., 27, 97-133, (1974) · Zbl 0291.35012
[8] Lax, P.D, Integrals of nonlinear equations of evolution and solitary waves, Comm. pure appl. math., 21, 467-490, (1968) · Zbl 0162.41103
[9] Lax, P.D, Periodic solutions of the Korteweg-de Vries equation, Comm. pure appl. math., 28, 141-188, (1975) · Zbl 0295.35004
[10] Lions, J.L, Quelques méthodes de résolution des problèmes aux limites non linéaires, (1969), Dunod Gauthier-Villars Paris · Zbl 0189.40603
[11] Lions, J.L; Magenes, E, ()
[12] Lisher, E.J, Comments on the use of the Korteweg-de Vries equation in the study of anharmonic lattices, (), 119-126
[13] Miura, R.M, The Korteweg-de Vries equation: A survey of results, SIAM rev., 18, 3, 412-459, (1976) · Zbl 0333.35021
[14] Mukasa, T; Tsutsdmi, M, Parabolic regularizations for the generalized Korteweg-de Vries equation, Funkcial. ekvac., 14, 89-110, (1971) · Zbl 0228.35077
[15] Peetre, J, Espaces d’interpolation et théorème de Sobolev, Ann. inst. Fourier (Grenoble), 16, 279-317, (1966) · Zbl 0151.17903
[16] Perelomov, A.M, Nonlinear evolution equations that leave the spectrum of multidimension Schrödinger equation invariant do not exist, Lett. math. phy., 1, 175-178, (1976) · Zbl 0349.35018
[17] Saut, J.C, Sur certaines généralisations de l’équation de Korteweg-de Vries, C. R. acad. sci. Paris Sér. A, 280, 653-656, (1975) · Zbl 0296.35018
[18] Saut, J.C, Sur quelques généralisations de l’équation de Korteweg-de Vries, I, J. math. pures appl., 58, 21-61, (1979) · Zbl 0449.35083
[19] Saut, J.C; Temam, R, Remarks on the Korteweg-de Vries equation, Israel J. math., 24, 1, 78-87, (1976) · Zbl 0334.35062
[20] Strauss, W.A, On continuity of functions with values in various Banach spaces, Pacific J. math., 19, 3, 543-551, (1966) · Zbl 0185.20103
[21] Temam, R, Sur un problème non linéaire, J. math. pures appl., 48, 159-172, (1969) · Zbl 0187.03902
[22] Tsutsumi, M, On extensions of my previous paper: “on the Korteweg-de Vries equation”, (), 548-551, 7 · Zbl 0351.35071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.