zbMATH — the first resource for mathematics

Generalized Runge-Kutta methods of order four with stepsize control for stiff ordinary differential equations. (English) Zbl 0436.65047

65L05 Numerical methods for initial value problems involving ordinary differential equations
65L07 Numerical investigation of stability of solutions to ordinary differential equations
Full Text: DOI EuDML
[1] Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions. New York: Dover Publ. Inc. 1970 · Zbl 0171.38503
[2] Bedet, R.A., Enright, W.H., Hull, T.E.: STIFF DETEST: A program for comparing numerical methods for stiff ordinary differential equations. Tech. Rep. No. 81, University of Toronto 1975
[3] Bulirsch, R., Stoer, J.: Numerical treatment of ordinary differential equations by extrapolation methods. Numer. Math.8, 1-13 (1966) · Zbl 0135.37901
[4] Burrage, K.: A special family of Runge-Kutta methods for solving stiff differential equations. BIT18, 22-41 (1978) · Zbl 0384.65034
[5] Dahlquist, G.: A special property for linear multistep methods. BIT3, 27-43 (1963) · Zbl 0123.11703
[6] Diekhoff, H.-J., Lory, P., Oberle, H.J., Pesch, H.-J., Rentrop, P., Seydel, R.: Comparing routines for the numerical solution of initial value problems of ordinary differential equations in multiple shooting. Numer. Math.27, 449-469 (1977) · Zbl 0361.65079
[7] Enright, W.H., Bedet, R., Farkas, I., Hull, T.F.: Test results on initial value methods for non-stiff ordinary differential equations. Techn. Rep. No. 68, University of Toronto 1974
[8] Enright, W.H., Hull, T.E., Lindberg, B.: Comparing numerical methods for stiff systems of ordinary differential equations. Tech. Rep. No. 69, 1974 University of Toronto, see also BIT15, 10-48 (1975) · Zbl 0301.65040
[9] Gear, C.W.: Numerical initial value problems in ordinary differential equations. N.Y.: Prentice Hall 1970
[10] Grigorieff, R.D.: Numerik gewöhnlicher Differentialgleichungen. Stuttgart: Teubner 1972 · Zbl 0249.65051
[11] Hairer, E., Wanner, G.: On the Butcher group and general mutivalue methods. Computing13, 1-15 (1974) · Zbl 0293.65050
[12] Hindmarsh, A.C.: GEAR ? ordinary differential equation system solver. UCID-30001, Rev. 2, University of California: Lawrence Livermore Laboratory 1972
[13] Kaps, P.: Modifizierte Rosenbrockmethoden der Ordnung 4, 5 und 6 zur numerischen Integration steifer Differentialgleichungen. Dissertation, Universität Innsbruck, September 1977
[14] Kaps, P., Wanner, G.: Rosenbrock-type methods of high order. In press (1979) · Zbl 0469.65047
[15] Nørsett, S.P.,C-polynomials for rational approximation to the exponential function. Numer. Math.25, 39-56 (1975) · Zbl 0299.65010
[16] Nørsett, S.P., Wanner, G.: The real-pole sandwich for rational approximations and oscillation equations. BIT19, 79-94 (1979) · Zbl 0413.65011
[17] Nørsett, S.P., Wolfbrandt, A.: Order conditions for Rosenbrock-type methods. Numer. Math.32, 1-15 (1979) · Zbl 0471.65044
[18] Rosenbrock, H.H.: Some general implicit processes for the numerical solution of differential equatons. Comp. J.5, 329-331 (1963) · Zbl 0112.07805
[19] Stoer, J., Bulirsch, R.: Einführung in die Numerische Mathematik II. Berlin, Heidelberg, New York: Springer Verlag, 2. Auflage, 1978 · Zbl 0375.65001
[20] Wanner, G.: Letter to S.P. Nørsett and unpublished communications to P. Kaps and A. Wolfbrandt, 1973
[21] Wolfbrandt, A.: A study of Rosenbrock processes with respect to order conditions and stiff stability. Dissertation, Research Rep. 77.01 R, University of Göteborg, March 1977
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.