zbMATH — the first resource for mathematics

Entropies in finite fuzzy sets. (English) Zbl 0436.94012
Summary: We introduce a general type of entropies (in the sense of De Luca and Termini) for finite fuzzy sets and study its properties for the case of the so-called \(\theta-*\) entropies, which generalize both the logarithmic entropy (as taken by the above mentioned authors), and Sugeno’s fuzzy integral for finite sets.

94A17 Measures of information, entropy
94D05 Fuzzy sets and logic (in connection with information, communication, or circuits theory)
Full Text: DOI
[1] Zadeh, L.A., Probability measures of fuzzy events, J. math. anal. appl., 23, 421-427, (1968) · Zbl 0174.49002
[2] De Luca, A.; Termini, S., A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory, Information and control, 20, 4, 301-312, (1972) · Zbl 0239.94028
[3] Nguyen, H.T., Mesures d’information, ensembles flous et espaces topologiques aléatoires, ()
[4] de Fériet, J.Kampé, Mesure de l’information fourni par un évenement, () · Zbl 0233.94009
[5] Birkhoff, G., Lattice theory, () · Zbl 0126.03801
[6] Sugeno, M., Theory of fuzzy integrals and its applications, () · Zbl 0316.60005
[7] Zadeh, L.A., Fuzzy sets, Information and control, 8, 338-353, (1965) · Zbl 0139.24606
[8] Kaufmann, A., ()
[9] Knopfmacher, J., On measures of fuzziness, J. math. anal. appl., 49, 529-534, (1975) · Zbl 0308.02061
[10] De Luca, A.; Termini, S., Entropy of L-fuzzy sets, Information and control, 24, 1, 55-73, (1974) · Zbl 0277.94014
[11] Batle, N.; Trillas, E., Upper-order morphisms and fuzzy integral, () · Zbl 0421.28015
[12] C. Sanchis, Sobre entropias difusas, Internal report, Dept. Math. Esc. Téc. Sup. Arq. de Barcelona.
[13] Schweizer, B., Multiplications on the space of probability distribution functions, Aequationes math., 12, 2-3, 156-183, (1975) · Zbl 0305.22004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.