×

zbMATH — the first resource for mathematics

The integrability problem for Lie equations. (English) Zbl 0439.58025

MSC:
58H05 Pseudogroups and differentiable groupoids
22E65 Infinite-dimensional Lie groups and their Lie algebras: general properties
58J99 Partial differential equations on manifolds; differential operators
53C10 \(G\)-structures
35N10 Overdetermined systems of PDEs with variable coefficients
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Claudette Buttin and Pierre Molino, Théorème général d’équivalence pour les pseudogroupes de Lie plats transitifs, J. Differential Geometry 9 (1974), 347 – 354 (French). · Zbl 0294.53029
[2] É. Cartan, Sur la structure des groupes infinis de transformations, Ann. Sci. École Norm. Sup. 21 (1904), 153-206; 22 (1905), 219-308; Oeuvres complètes: II, vol. 2, Groupes infinis, systèmes différentiels, théories d’équivalence, Gauthier-Villars, Paris, 1953, pp. 571-714.
[3] Elie Cartan, Œuvres complètes. Partie II. Vol. 1. Algèbre, formes différentielles, systèmes différentiels. Vol. 2. Groupes infinis, systèmes différentiels, théories d’équivalence, Gauthier-Villars, Paris, 1953 (French). · Zbl 0058.08302
[4] Jack F. Conn, A new class of counterexamples to the integrability problem, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), no. 7, 2655 – 2658. · Zbl 0373.58013
[5] Jack F. Conn, Nonabelian minimal closed ideals of transitive Lie algebras, Mathematical Notes, vol. 25, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1981. · Zbl 0458.17003
[6] Hubert Goldschmidt, Existence theorems for analytic linear partial differential equations, Ann. of Math. (2) 86 (1967), 246 – 270. · Zbl 0154.35103
[7] Hubert Goldschmidt, Prolongations of linear partial differential equations. I. A conjecture of Élie Cartan, Ann. Sci. École Norm. Sup. (4) 1 (1968), 417 – 444. · Zbl 0167.09402
[8] Hubert Goldschmidt, On the Spencer cohomology of a Lie equation, Partial differential equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971) Amer. Math. Soc., Providence, R.I., 1973, pp. 379 – 385.
[9] Hubert Goldschmidt, Sur la structure des équations de Lie. I. Le troisième théorème fondamental, J. Differential Geometry 6 (1971/72), 357 – 373 (French). · Zbl 0235.58011
[10] Hubert Goldschmidt, Sur la structure des équations de Lie. II. Équations formellement transitives, J. Differential Geometry 7 (1972), 67 – 95 (French). · Zbl 0273.58015
[11] Hubert Goldschmidt, Sur la structure des équations de Lie. III. La cohomologie de Spencer, J. Differential Geometry 11 (1976), no. 2, 167 – 223 (French). · Zbl 0321.58021
[12] Hubert Goldschmidt and Donald Spencer, On the non-linear cohomology of Lie equations. I, Acta Math. 136 (1976), no. 1-2, 103 – 170. , https://doi.org/10.1007/BF02392044 Hubert Goldschmidt and Donald Spencer, On the non-linear cohomology of Lie equations. II, Acta Math. 136 (1976), no. 3-4, 171 – 239. · Zbl 0452.58025
[13] H. Goldschmidt and D. Spencer, On the non-linear cohomology of Lie equations. III, IV, J. Differential Geometry 13 (1978). · Zbl 0452.58026
[14] Victor Guillemin, A Jordan-Hölder decomposition for a certain class of infinite dimensional Lie algebras, J. Differential Geometry 2 (1968), 313 – 345. · Zbl 0183.26102
[15] Victor W. Guillemin and Shlomo Sternberg, An algebraic model of transitive differential geometry, Bull. Amer. Math. Soc. 70 (1964), 16 – 47. · Zbl 0121.38801
[16] V. W. Guillemin and S. Sternberg, The Lewy counterexample and the local equivalence problem for \?-structures, J. Differential Geometry 1 (1967), 127 – 131. · Zbl 0159.23401
[17] Antonio Kumpera and Donald Spencer, Lie equations. Vol. I: General theory, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. Annals of Mathematics Studies, No. 73. · Zbl 0258.58015
[18] M. Kuranishi and A. M. Rodrigues, Quotients of pseudo groups by invariant fiberings, Nagoya Math. J. 24 (1964), 109 – 128. · Zbl 0163.45301
[19] Bernard Malgrange, Equations de Lie. I, J. Differential Geometry 6 (1972), 503 – 522 (French). Collection of articles dedicated to S. S. Chern and D. C. Spencer on their sixtieth birthdays. · Zbl 0264.58009
[20] Pierre Molino, Théorie des \?-structures: le problème d’équivalence, Lecture Notes in Mathematics, Vol. 588, Springer-Verlag, Berlin-New York, 1977 (French). Notes rédigées avec la collaboration de F. Toupine. · Zbl 0357.53022
[21] Alan S. Pollack, The integrability problem for pseudogroup structures, J. Differential Geometry 9 (1974), 355 – 390. · Zbl 0281.53030
[22] D. C. Spencer, Deformation of structures on manifolds defined by transitive, continuous pseudogroups. I. Infinitesimal deformations of structure, Ann. of Math. (2) 76 (1962), 306 – 398. , https://doi.org/10.2307/1970277 D. C. Spencer, Deformation of structures on manifolds defined by transitive, continuous pseudogroups. II. Deformations of structure, Ann. of Math. (2) 76 (1962), 399 – 445. · Zbl 0124.38601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.