×

The impact of distance on location problems. (English) Zbl 0439.90024


MSC:

90B05 Inventory, storage, reservoirs
90-01 Introductory exposition (textbooks, tutorial papers, etc.) pertaining to operations research and mathematical programming

Software:

Algorithm 97
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bach, L., Models for the location-allocation problem in urban and regional infrastructure planning, ()
[2] Burkard, R.E.; Krarup, J.; Pruzan, P.M., Solution properties of multicriteria 0-1 programming problems, (), (Submitted for publication) · Zbl 0456.90076
[3] Christofides, N.; Eilon, S., Expected distances in distribution problems, Operational res. quart., 20, 437-443, (1969)
[4] Cooper, L., An extension of the generalized Weber problem, J. regional sci., 8, 181-197, (1968)
[5] Cordellier, F.; Fiorot, J.C.; Jacobsen, S.K., An algorithm for the generalized Fermat-Weber problem, ()
[6] Eilon, S.; Watson-Gandy, C.T.; Christofides, N., Distribution management: mathematical modelling and practical analysis, (1971), Griffin London
[7] Eyster, J.W.; White, J.A.; Wierville, W.W., On solving multifacility location problems using a hyperboloid approximation procedure, AIEE transactions, 5, 1-6, (1973)
[8] Floyd, R.W., Algorithm 97, shortest path, Comm. ACM, 5, 345, (1962)
[9] Francis, R.L., Some aspects of a minimax location problem, Operations research, 15, 1163-1169, (1967)
[10] Francis, R.L.; Goldstein, J.M., Location theory: A selected bibliography, Operations res., 22, 400-410, (1974) · Zbl 0274.90028
[11] Francis, R.L.; White, J.A., Facility layout and location: an analytical approach, (1974), Prentice-Hall Englewood Cliffs, NJ
[12] Geoffrion, A.M., Better distribution planning with computer models, Harvard business rev., 76404, 92-99, (1976)
[13] Geoffrion, A.M., Customer aggregation in distribution modeling, () · Zbl 0375.90040
[14] Golden, B.L.; Magnanti, T.L., Deterministic network optimization: A bibliography, Networks, 7, 149-183, (1977) · Zbl 0362.90116
[15] Goodchild, M.F., Geographical uncertainties in location-allocation, ()
[16] Handler, G.Y.; Zang, I., A dual algorithm for the constrained shortest path problem, () · Zbl 0453.68033
[17] Hurter, A.P.; Schaefer, M.K.; Wendell, R.E., Solutions of constrained location problems, Management sci., 22, 51-56, (1975) · Zbl 0314.90086
[18] Jacobsen, S.K., Weber rides again, (1974), IMSOR, The Technical University of Denmark
[19] Jacobsen, S.K.; Pruzan, P.M., Lokalisering-modeller og Løsningsmetoder, (1978), Studentlitteratur Lund, Sweden
[20] Jørgensen, K.G., Afstandsmal og zoneinddelings indflydelse på formulering og løsning af lokaliserings-problemer, ()
[21] Kielsgaard, P.; Pruzan, P.M.; Weywadt, S., Strukturrationalisering — en model til planlaegning af regioner, Moderne databehandling, 1, (1969)
[22] Krarup, J.; Pruzan, P.M., Simple plant location problems, ()
[23] Krarup, J.; Pruzan, P.M., Computer-aided layout design, Math. prog. study, 9, 611-630, (1978) · Zbl 0413.90058
[24] Krarup, J.; Pruzan, P.M., Selected families of location problems, part I: center problems, part II: Median problems, Ann. discrete math., 5, 327-387, (1979) · Zbl 0415.90063
[25] Krarup, J.; Pruzan, P.M., Challenging unsolved center and Median problems, (), (Forthcoming) · Zbl 0426.90022
[26] Krarup, J.; Pruzan, P.M., On the reducibility of minimax to minisum 0-1 programming problems, (), (Forthcoming in European J. Operational Res.) · Zbl 0451.90084
[27] Kuenne, R.E.; Soland, R.M., Exact and approximate solutions to the multi-source Weber problem, Math. prog., 3, 193-209, (1972) · Zbl 0245.90021
[28] Kuhn, H.W., A note on Fermat’s problem, Math. prog., 4, 98-107, (1973) · Zbl 0255.90063
[29] Lea, A.C., Location-allocation systems: an annotated bibliography, ()
[30] Love, R.F.; Morris, J.G., Modelling inter-city road distances by mathematical functions, Operational res. quart., 23, 61-71, (1972) · Zbl 0231.90059
[31] Love, R.F.; Morris, J.G., Mathematical models of road travel distances, Management sci., 25, 2, 130-139, (1979) · Zbl 0419.90053
[32] Morris, J.G., Analysis of a generalized empirical “distance” function for use in location problems, ()
[33] O.A.C., Beskrivelse af en model for optimering af service funktioners placering, (1977), Operations Analysis Corporation Copenhagen
[34] Picard, J.-C.; Ratliff, H.D., A cut approach to the rectilinear distance facility location problem, Operations res., 26, 422-433, (1978) · Zbl 0381.90090
[35] Pruzan, P.M., The bangladesh grain model, European J. operational res., 3, 110-121, (1979)
[36] Schaefer, M.K.; Hurter, A.P., An algorithm for the solution of a locational problem with metric constraints, Naval res. logistics quart., 21, 625-636, (1974) · Zbl 0298.90063
[37] Weiszfeld, E., Sur le point pur lequel la somme des distances de n point donnés est minimum, Tohoku math. J., 43, 355-386, (1936) · Zbl 0017.18007
[38] Wesolowsky, G.O.; Love, R.F., A nonlinear approximation method for solving a generalized rectangular distance Weber problem, Management sci., 18, 656-663, (1972) · Zbl 0238.90059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.