Haughton, D. M.; Ogden, R. W. Bifurcation of inflated circular cylinders of elastic material under axial loading - II. Exact theory for thick-walled tubes. (English) Zbl 0442.73067 J. Mech. Phys. Solids 27, 489-512 (1979). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 40 Documents MSC: 74K15 Membranes 74S30 Other numerical methods in solid mechanics (MSC2010) 74G99 Equilibrium (steady-state) problems in solid mechanics 74H99 Dynamical problems in solid mechanics Keywords:exact theory for thick-walled tubes; bifurcation; circular cylindrical configuration of an elastic tube of finite wall thickness; internal or external pressure; axial force; incompressible isotropic elastic strain- energy function Citations:Zbl 0412.73065 PDF BibTeX XML Cite \textit{D. M. Haughton} and \textit{R. W. Ogden}, J. Mech. Phys. Solids 27, 489--512 (1979; Zbl 0442.73067) Full Text: DOI OpenURL References: [1] Chadwick, P.; Haddon, E.W., J. inst. maths applies, 10, 258, (1972) [2] Charrier, J.-M.; Li, Y.K., Trans. soc. rheol., 21, 301, (1977) [3] Ertepinar, A., Theoretical and experimental studies on shells of arbitrary wall-thickness subjected to internal and external pressure, (), Diss. abstr., B33, 1, 760-B, (1972), See [4] Ertepinar, A., Int. J. solids struct., 14, 715, (1978) [5] Haughton, D.M.; Ogden, R.W., J. mech. phys. solids, 26, 111, (1978) [6] J. mech. phys. solids, 27, 179, (1979), Designated (I) in the text [7] Hill, J.M., J. elasticity, 6, 113, (1976) [8] Nowinski, J.L.; Shahinpoor, M., Int. J. non-linear mech., 4, 143, (1969) [9] Ogden, R.W., (), 127 [10] Patterson, J.C., Int. J. non-linear mech., 11, 385, (1976) [11] Sierakowski, R.L.; Sun, C.T.; Ebcioglu, I.K., Int. J. non-linear mech., 10, 193, (1975) [12] Skala, D.P., Rubber chem. technol., 43, 745, (1970) [13] Wang, A.S.D.; Ertepinar, A., Int. J. non-linear mech., 7, 539, (1972) [14] Wilkes, E.W., Q.J. mech. appl. math., 8, 88, (1955) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.