zbMATH — the first resource for mathematics

Sheaf models for set theory. (English) Zbl 0446.03041

03E40 Other aspects of forcing and Boolean-valued models
03G30 Categorical logic, topoi
18B25 Topoi
03E70 Nonclassical and second-order set theories
PDF BibTeX Cite
Full Text: DOI
[1] Cohen, P.J., Set theory and the continuum hypothesis, (1966), Benjamin New York · Zbl 0182.01301
[2] Coste, M., Logique d’ordre supérieure dans LES topos élémentaires, ()
[3] Coste, M.F., Construction d’un modèle booléen de la théorie des ensembles a partir d’un topos booléen, C.R. acad. sci. Paris, 278, A1073-1076, (1974) · Zbl 0282.02028
[4] Dummett, M., Elements of intuitionism, (1978), Oxford Univ. Pr Oxford
[5] Fourman, M.P., The logic of topoi, (), 1053-1090
[6] P. Freyd, The independence of the axiom of choice, J. Pure Appl. Algebra, to appear. · Zbl 0446.03042
[7] Jech, T., Lectures in set theory, () · Zbl 0672.90002
[8] Johnstone, P.T., Topos theory, () · Zbl 0368.18001
[9] Lawvere, F.W., Quantifiers and sheaves, Actes du congrés international des mathématiciens, 1, 329-334, (1970), Nice · Zbl 0261.18010
[10] Makkai, M.; Reyes, G., First-order categorical logic, () · Zbl 0830.03036
[11] Cole, J.C.; Bell, J.; Slomson, A., Proc. Bertrand Russel Memorial Logic Conference, Uldum 1971, Categories of sets and models of set theory, 351-399, (1973), Leeds
[12] Mitchell, W., Boolean topoi and the theory of sets, J. pure appl. algebra, 2, 261-274, (1972) · Zbl 0245.18001
[13] D.S. Scott, The presheaf model for set theory, to appear.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.