×

zbMATH — the first resource for mathematics

Pseudoconvexity in the theory of complex spaces. (English. Russian original) Zbl 0449.32020
J. Sov. Math. 14, 1363-1407 (1980); translation from Itogi Nauki Tekh., Ser. Algebra Topologiya Geom. 15, 93-171 (1977).
MSC:
32T99 Pseudoconvex domains
32F10 \(q\)-convexity, \(q\)-concavity
32E10 Stein spaces, Stein manifolds
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
14C20 Divisors, linear systems, invertible sheaves
32J25 Transcendental methods of algebraic geometry (complex-analytic aspects)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] V. D. Golovin, ?Concerning a paper of V. Villani,? Ukr. Geometr. Sb., No. 13, 63?66 (1973).
[2] L. B. Graifer, S. Ya. Gusman, and A. K. Knyazeva, ?Problems of classification of open complex manifolds,? Uch. Zap. Permsk. Gos. Univ., No. 218, 53?55 (1969).
[3] M. G. Zaidenberg, ?On complex analytic Banach manifolds in connection with problems of operator theory,? Tr. Nauchno-Issled. Bist. Mat. Voronezh. Univ., No. 3, 35?43 (1971).
[4] V. A. Krasnov, ?On the equivalence of embeddings of contractible complex spaces,? Izv. Akad. Nauk SSSR, Ser. Mat.,38, No. 5, 1012?1036 (1974).
[5] V. A. Krasnov, ?Transitivity of exceptional subspaces,? Izv. Akad. Nauk SSSR, Ser. Mat.,39, No. 1, 15?22 (1975).
[6] S. P. L’vov, ?On positive holomorphic vector bundles,? Usp. Mat. Nauk,29, No. 1, 175?176 (1974).
[7] S. P. L’vov, ?A decomposition of Hodge type for coherent sheaves,? Preprint, Moscow Univ., Moscow (1975).
[8] A. L. Onishchik, ?Stein spaces,? in: Algebra, Topologiya, Geometriya, Vol. 11 (Itogi Nauki iTekh., VINITI Akad. Nauk SSSR), Moscow (1974), pp. 125?151.
[9] V. P. Palamodov, ?On a Stein manifold the Dolbeault complex splits in positive dimensions,? Mat. Sb.,88, No. 2, 287?315 (1972). · Zbl 0255.32003
[10] I. I. Pyatetskii-Shapiro, ?Arithmetic groups in complex domains,? Usp. Mat. Nauk,19, No. 6, 93?121 (1964).
[11] G. M. Khenkin and E. M. Chirka, ?Boundary properties of holomorphic functions of several complex variables,? in: Sovrem. Probl. Mat., Vol. 4 (Itogi Nauki i Tekh., VINITI Akad. Nauk SSSR), Moscow (1975), pp. 13?142.
[12] F. Acquistapace and F. Broglia, ?Problemi di Cousin e di Poincare per spazi di Stein non ridotti,? Ann. Scuola Norm. Super. Pisa, Sci. Fis. Mat.,27, No. 4, 889?904 (1973). · Zbl 0303.32014
[13] F. Acquistapace, F. Broglia, and A. A. Tognoli, ?A relative embedding theorem for Stein spaces,? Ann. Scuola Norm. Super. Pisa,2, Sez. IV, No. 4, 507?522 (1975). · Zbl 0313.32020
[14] K. Adachi, M. Suzuki, and M. Yoshida, ?Continuation of holomorphic mappings with values in a complex Lie group,? Pac. J. Math.,47, No. 1, 1?4 (1973). · Zbl 0237.32008 · doi:10.2140/pjm.1973.47.1
[15] Akizuki Yasuo and Nakano Shigeo, ?Note on Kodaira-Spencer’s proof of Lefschetz theorems,? Proc. Jpn. Acad.,30, No. 4, 266?272 (1954). · Zbl 0059.14701 · doi:10.3792/pja/1195526105
[16] V. Ancona, ?Fasci debolmente positivi su di uno spazio complesso,? Atti Accad. Naz. Lincei, Cl. Sci. Fis., Mat. Nat. Rend.,54, No. 4, 567?569 (1973). · Zbl 0286.32007
[17] V. Ancona, ?Un teoreme di contrattibilita relativa,? Boll. Unione Mat. Ital.,9, No. 3, 785?790 (1974).
[18] V. Ancona, ?Fasci metricamente pseudoconvessi sopra uno spazio complesso,? Ann. Univ. Ferrar, Sez. VII,20, 49?52 (1975). · Zbl 0303.32011
[19] V. Ancona, ?Espaces fibres lineaires faiblement negatifs sur un espace complexe,? Trans. Am. Math. Soc.,215, 45?61 (1976).
[20] A. Andreotti, ?Theoremes de dependence algebrique sur les espaces complexes pseudoconcaves,? Bull. Soc. Math. Fr.,91, No. 1, 1?38 (1963). · Zbl 0113.06403 · doi:10.24033/bsmf.1587
[21] A. Andreotti, ?Problema di Levi e convessita olomorfa,? Sympos. Math. Inst. Naz. Alta Mat., Vol. 2, London-New York (1969), pp. 347?352.
[22] A. Andreotti, ?Plongement projectif des espaces pseudoconcaves,? Lect. Notes Math.,409, 204?211 (1974). · Zbl 0301.32016 · doi:10.1007/BFb0068101
[23] A. Andreotti and H. Grauert, ?Theoremes de finitude pour la cohomolgie des espaces complexes,? Bull. Soc. Math. Fr.,90, No. 2, 193?352 (1962). · Zbl 0106.05501 · doi:10.24033/bsmf.1581
[24] A. Andreotti and H. Grauert, ?Algebraische Körper von automorphen Funktionen,? Nachr. Akad. Wiss. Göttingen, Math.-Phys. Kl., No. 3, 39?48 (1961).
[25] A. Andreotti and A. T. Huckleberry, ?Pseudoconcave Lie groups,? Compos. Math.,25, No. 2, 109?115 (1972). · Zbl 0239.32018
[26] A. Andreotti and Siu Yum-Tong, ?Protective embedding of pseudoconcave spaces,? Ann. Scuola Norm. Super. Pisa. Sci. Fis. Mat.,24, No. 2, 231?278 (1970). · Zbl 0195.36901
[27] A. Andreotti and W. Stoll, ?Meromorphic functions on complex spaces,? Lect. Notes Math.,409, 279?309 (1974). · Zbl 0301.32024 · doi:10.1007/BFb0068105
[28] A. Andreotti and G. Tomassini, ?A remark on the vanishing of certain cohomology groups,? Compos. Math.,21, No. 4, 417?430 (1969). · Zbl 0186.14101
[29] A. Andreotti and G. Tomassini, ?Some remarks on pseudoconcave manifolds,? in: Essays Topology and Related Topics, Berlin et al. (1970), pp. 85?104.
[30] A. Andreotti and E. Vesentini, ?Sopra un teorema di Kodaira,? Ann. Scuola Norm. Super. Pisa. Sci. Fis. Mat.,15, No. 4, 283?309 (1961).
[31] A. Andreotti and E. Vesentini, ?Un teorema d’annulamento della coomologia,? Atti Convegno Internaz. Geom. Algebrica, Torino, 1961, Torino (1962), pp. 57?62.
[32] A. Andreotti and E. Vesentini, ?Disiguaglianze di Carleman sopra una varieta complessa,? Atti Accad. Naz. Lincei. Cl. Sci. Fis., Mat. Nat. Rend.,35, No. 6, 431?434 (1963). · Zbl 0138.06603
[33] A. Andreotti and E. Vesentini, ?Carleman estimates for the Laplace-Beltrami equation on complex manifolds,? Publs. Math. Inst. Hautes Etudes Scient., No. 25, 313?362 (1965). · Zbl 0138.06604
[34] C. Banica, ?Une caracterisation de la dimension d’un faisceau analytique coherent,? Compositio Math.,25, No. 1, 101?108 (1972).
[35] C. Banica and O. Stanasila, ?A remark on proper morphisms of analytic spaces,? Boll. Unione Mat. Ital.,4, No. 1, 76?77 (1971). · Zbl 0245.32004
[36] C. Banica and O. Stanasila, Metode Algebrice in Teoria Globala a Spatilor Complexe, Bucuresti Acad. RSR (1974). · Zbl 0284.32006
[37] T. J. Barth, ?Families of nonnegative divisors,? Trans. Am. Math. Soc.,131, No. 1, 223?245 (1968). · Zbl 0169.41501 · doi:10.1090/S0002-9947-1968-0219751-3
[38] T. J. Barth, ?Normality domains for families of holomorphic maps,? Math. Ann.,190, No. 4, 293?297 (1971). · Zbl 0198.42401 · doi:10.1007/BF01431157
[39] W. Barth, ?Über die analytische Cohomologiegruppe Hn?1(Pn-A, F),? Inv. Math.,9, No. 2, 135?144 (1970). · Zbl 0186.40403 · doi:10.1007/BF01404553
[40] W. Barth, ?Der Abstand von einer algebraischen Mannigfaltigkeit im komplex-projektiven Raum,? Math. Ann.,187, No. 2, 150?162 (1970). · Zbl 0184.31303 · doi:10.1007/BF01350179
[41] W. Barth, ?Transplanting cohomology classes in complex-projective space,? Am. J. Math.,92, No. 4, 951?967 (1970). · Zbl 0206.50001 · doi:10.2307/2373404
[42] R. F. Basener, ?Nonlinear Cauchy-Riemann equations and q-pseudoconvexity,? Duke Math. J.,43, No. 1, 203?213 (1976). · Zbl 0329.32008 · doi:10.1215/S0012-7094-76-04317-9
[43] J. Bingener, ?Homomorph-prävollständige Resträume zu analytischen Mengen in Steinschen Räumen,? J. Reine Angew. Math.,285, 149?171 (1976). · Zbl 0326.32012
[44] J. Bingener and U. Storch, ?Resträume zu analytischen Mengen in Steinschen Räumen,? Math. Ann.,210, No. 1, 33?53 (1974). · Zbl 0275.32006 · doi:10.1007/BF01344544
[45] J. F. Björk, ?Holomorphic convexity and analytic structures in Banach algebras,? Ark. Mat.,9, No. 1, 39?54 (1971). · Zbl 0221.46055 · doi:10.1007/BF02383636
[46] S. Bloch and D. Giesecker, ?The positivity of the Chern classes of an ample vector bundle,? Invent. Math.,22, No. 2, 112?117 (1971). · Zbl 0212.53502 · doi:10.1007/BF01404655
[47] J. Bochnak, ?Sur la factorialite des anneaux de fonctions analytiques,? C. R. Acad. Sci.,A279, No. 8, 269?272 (1974). · Zbl 0299.32001
[48] A. Borel, ?Pseudoconcavite et groupes arithmetiques,? in: Essays Topology and Related Topics, Berlin et al. (1970), pp. 70?84.
[49] L. Boutet de Monvel, A. Hirschowitz, and F. Pham, ?Espaces de Hartogs,? C. R. Acad. Sci.,273, No. 12, 514?516 (1971).
[50] A. Brender, ?Stable complex structures on real manifolds,? J. Diff. Geom.,8, No. 4, 579?588 (1973). · Zbl 0282.32009 · doi:10.4310/jdg/1214431960
[51] J. Brun, ?Sur le probleme de Levi dans certains fibres,? Manuscr. Math.,14, No. 3, 217?222 (1974). · Zbl 0299.32024 · doi:10.1007/BF01171407
[52] R. Carmignani, ?Envelopes of holomorphy and holomorphic convexity,? Trans. Am. Math. Soc.,179, 415?431 (1973). · Zbl 0285.32010 · doi:10.1090/S0002-9947-1973-0316748-1
[53] A. Cassa, ?Ogni curva di una n-varieta di Stein e definita da n funcioni,? Boll. Unione Mat. Ital.,12, Nos. 1?2, 41?49 (1975); Errata: Boll. Unione Mat. Ital.,13-A, No. 1, 213?214 (1976). · Zbl 0375.32014
[54] A. Cassa, ?A theorem on Runge problem for analytic curves,? Ann. Mat. Pura Appl.,107, 169?184 (1975). · Zbl 0322.32005 · doi:10.1007/BF02416472
[55] B. Cenkl and G. Sorani, ?Cohomology groups associated with the \(\bar \partial \bar \partial \) -operator,? Pac. J. Math.,39, No. 2, 351?369 (1971). · Zbl 0232.58007 · doi:10.2140/pjm.1971.39.351
[56] B. Cenkl and G. Sorani, ?Sur l’operateur \(\bar \partial \bar \partial \) (l), (2),? Bull. Soc. Math. Fr., Suppl. No. 38, 79?88 (1974). · Zbl 0314.58015
[57] Chern Shiing-shen, Complex Manifolds, Chicago (1956).
[58] S. Coen, ?Sull’omologia degli aperti q-completi di uno spazio di Stein,? Ann. Scuola Norm. Super. Pisa, Sci. Fis. Mat.,23, No. 2, 289?303 (1969). · Zbl 0175.37302
[59] S. Coen, ?Sulla coomologia all’infinito delle varieta complesse,? Boil. Unione Mat. Ital.,4, No. 1, 106?118 (1971). · Zbl 0211.26704
[60] S. Coen, ?Factoriality of a ring of holomorphic functions,? Compos. Math.,29, No. 2, 191?196 (1974). · Zbl 0291.32024
[61] S. Coen, ?Una nota sul problema di Poincare,? Atti Accad. Naz. Lincei Cl. Sci. Fis., Mat., Nat. Rend.,57, No. 5, 342?345 (1974?1975).
[62] S. Coen, ?Some consequences of theorem A for complex spaces,? Ann. Mat. Pura Appl.,106, 119?153 (1975). · Zbl 0323.32007 · doi:10.1007/BF02415025
[63] G. Coeure, ?Prolongement analytique,? Lect. Notes Math.,116, 128?132 (1970). · doi:10.1007/BFb0059250
[64] G. Coeure, Analytic Functions and Manifolds in Infinite Dimensional Spaces, North Holland Publ. Co., Amsterdam (1974).
[65] M. Cornalba, ?Two theorems of modifications of analytic spaces,? Invent. Math.,20, No. 3, 227?247 (1973). · Zbl 0264.32006 · doi:10.1007/BF01394096
[66] M. Cornalba and P. Griffiths, ?Analytic cycles and vector bundles on noncompact algebraic varieties,? Invent. Math.,28, No. 1, 1?6 (1975). · Zbl 0293.32026 · doi:10.1007/BF01389905
[67] H. G. Dales, ?The ring of holomorphic functions on a Stein compact set as a unique factorization domain,? Proc. Am. Math. Soc.,44, No. 1, 88?92 (1974). · Zbl 0302.32018 · doi:10.1090/S0002-9939-1974-0333245-4
[68] R. De Graeve, ?Ouverts strictement p-convexes d’un espace analytique complexe,? C. R. Acad. Sci.,227, No. 5, A243-A245 (1973). · Zbl 0258.32005
[69] K. Diederich and J. E. Fornaess, ?Exhaustion functions and Stein neighborhoods for smooth pseudoconvex domains,? Proc. Nat. Acad. Sci. USA,72, No. 9, 3279?3280 (1975). · Zbl 0309.32012 · doi:10.1073/pnas.72.9.3279
[70] S. Dineen, ?Sheaves of holomorphic functions on infinite dimensional vector spaces,? Math. Ann.,202, No. 4, 337?345 (1973). · Zbl 0238.46022 · doi:10.1007/BF01433463
[71] S. Dineen, ?Holomorphic functions on locally convex topological vector spaces. II. Pseudo-convex domains,? Ann. Inst. Fourier,23, No. 3, 155?185 (1973). · Zbl 0266.46019 · doi:10.5802/aif.475
[72] L. Ehrenpreis, ?Some applications of the theory of distributions to several complex variables,? in: Seminar Analytic Funct., Vol. 1, Inst. Adv. Study, Princeton, N.J. (1958), pp. 65?79. · Zbl 0095.06203
[73] G. Elencwajg, ?Sur les revetements de varietes analytiques p-completes ou p-convexes,? C. R. Acad. Sci.,276, No. 2, A137-A139 (1973). · Zbl 0258.32006
[74] J.-L. Ermine, ?Holomorphe convexite des fibres analytiques a base de Stein et a fibre dans C,? Lect. Notes Math.,524, 96?105 (1976). · Zbl 0337.32004 · doi:10.1007/BFb0078001
[75] Eto Shun-ichi, Kazama Hideaki, and Watanabe Kiyoshi, ?On strongly q-pseudoconvex spaces with positive vector bundles,? Mem. Fac. Sci. Kyushu Univ. A,28, No. 2, 135?146 (1974). · Zbl 0297.32012
[76] Adib A. Fadlalla, ?On the principle of maximum modulus,? Boll. Unione Mat. Ital.,3, No. 4, 563?565 (1970).
[77] P. Farkas, ?About Stein compacts and holomorphic spaces,? Rev. Roum. Math. Pures Appl.,21, No. 5, 511?520 (1976). · Zbl 0343.32015
[78] A. Ferrari, ?Coomologia e forme differenziali sugli spazi analitichi complessi,? Ann. Scuola Norm. Super. Pisa. Sci. Fis. Mat.,25, No. 3, 469?480 (1971).
[79] M. J. Field, ?Sheaf cohomology, structures on manifolds and vanishing theory,? in: Global Anal. and Appl. Int. Semin. Course Trieste 1972, Vol. 2, Vienna (1974), pp. 167?188. · Zbl 0306.32006
[80] G. Fischer, Complex Analytic Geometry, Lect. Notes Math.,538 (1976). · Zbl 0343.32002
[81] W. Fischer, ?Eine Bemerkung zu einem Satz ?Theoremes de finitude pour la cohomologie des espaces complexes? von A. Andreotti and H. Grauert,? Math. Ann.,184, No. 4, 297?299 (1969). · Zbl 0177.11501 · doi:10.1007/BF01350857
[82] J. E. Fornaess, ?An increasing sequence of Stein manifolds whose limit is not Stein,? Math. Ann.,223, No. 3, 275?277 (1976). · Zbl 0334.32017 · doi:10.1007/BF01360958
[83] O. Forster, ?Eine Bemerkung über Rungesche Paare,? Arch. Math.,14, Nos. 4?5, 334?336 (1963). · Zbl 0128.07702 · doi:10.1007/BF01234963
[84] A. Friedman, ?Weak Levi conditions in several complex variables,? Bull. Am. Math. Soc.,71, No. 6, 908?912 (1965). · Zbl 0143.30101 · doi:10.1090/S0002-9904-1965-11439-2
[85] K. Fritzsche, ?q-Convex Restmengen in kompakten komplexen Mannigfaltigkeiten,? Math. Ann.,221, No. 3, 251?273 (1976). · Zbl 0327.32007 · doi:10.1007/BF01596392
[86] Fujiki Akira, ?On the blowing down of analytic spaces,? Publs. Res. Inst. Math. Sci.,10, No. 2, 473?507 (1975). · Zbl 0316.32009
[87] Fujiki Akira and Nakano Shigeo, ?Supplement to ?Onthe inverse of monoidal transformations,??’ Publs. Res. Inst. Math. Sci.,7, No. 3, 637?644 (1971). · Zbl 0234.32019 · doi:10.2977/prims/1195193401
[88] Fujimoto Hirotaka, ?On the continuation of analytic sets,? J. Math. Soc. Jpn.,18, No. 1, 51?85 (1966). · Zbl 0146.10803 · doi:10.2969/jmsj/01810051
[89] Fujimoto Hirotaka, ?The continuation of sections of torsion-free coherent analytic sheaves,? Nagoya Math. J.,31, 279?294 (1968). · Zbl 0155.40202 · doi:10.1017/S0027763000012769
[90] Fujimoto Hirotaka, ?On the holomorphic automorphism groups of complex spaces,? Nagoya Math. J.,33, 85?106 (1968). · Zbl 0165.40403 · doi:10.1017/S0027763000012873
[91] Fujimoto Hirotaka, ?On the automorphism group of a holomorphic fiber bundle over a complex space,? Nagoya Math. J.,37, 91?106 (1970). · Zbl 0191.37903 · doi:10.1017/S0027763000013325
[92] Fujimoto Hirotaka and Kasahara Kenkiti, ?On the continuability of holomorphic functions on complex manifolds,? J. Math. Soc. Jpn.,16, No. 3, 183?213 (1964). · Zbl 0146.10901 · doi:10.2969/jmsj/01630183
[93] Fujita Osamu, ?Sur les familles d’ensembles analytiques,? J. Math. Soc. Jpn.,16, No. 4, 379?405 (1964). · Zbl 0144.07901 · doi:10.2969/jmsj/01640379
[94] Fujita Osamu, ?Sur les suites de surfaces analytiques,? J. Math. Kyoto Univ.,4, No. 3, 627?635 (1965). · Zbl 0161.27403 · doi:10.1215/kjm/1250524608
[95] Fukushima Yukio, ?Continuation of holomorphic mappings,? Mem. Fac. Sci. Kyushu Univ.,27, No. 2, 343?350 (1973). · Zbl 0275.32005
[96] P. Gauduchon, ?Sur les formes a valeurs dans un fibre vectoriel holomorphe audessus d’une variete kählerienne,? C. R. Acad. Sci.,273, No. 9, A398-A401 (1971). · Zbl 0226.53023
[97] P. Gauduchon, ?Theoremes d’annulation au-dessus de varietes kähleriennes q-convexes,? C. R. Acad. Sci.,277, No. 5, A249-A251 (1973). · Zbl 0259.53049
[98] P. Gauduchon, ?Sur les formes satisfaisant les conditions de Neumann sur une variete kählerienne hyper-q-convexe,? C. R. Acad. Sci.,278, No. 26, A1637-A1640 (1974). · Zbl 0302.53031
[99] P. Gauduchon, ?La constante fondamentale d’une fibre en droites au-dessus d’une variete hermitienne compacte,? C. R. Acad. Sci.,281, No. 11, A393-A396 (1975). · Zbl 0312.53046
[100] J. Girbau, ?Sur les theoremes d’annulation de Kodaira,? C. R. Acad. Sci.,272, No. 11, A740-A742 (1971). · Zbl 0207.20502
[101] J. Girbau, ?Sur les theoremes d’annulation de Kodaira,? C. R. Acad. Sci.,273, No. 11, A461-A462 (1971). · Zbl 0217.47703
[102] J. Girbau, ?Fibres semipositifs et seminegatifs sur une variete kählerienne compacte,? Ann. Math. Pura Appl.,101, 171?183 (1974). · Zbl 0293.32025 · doi:10.1007/BF02417103
[103] J. Girbau, ?Sur le theoreme de Le Potier d’annulation de la cohomologie,? C. R. Acad. Sci.,283, No. 6, A355-A358 (1976). · Zbl 0358.32028
[104] S. I. Goldberg and Kobayashi Shoshichi, ?On holomorphic bisectional curvature,? J. Diff. Geom.,1, No. 3, 225?233 (1967). · Zbl 0169.53202 · doi:10.4310/jdg/1214428090
[105] H. Grauer, ?Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen,? Publs. Math. Inst. Hautes Etudes Scient., No. 5, 1?64 (1960); Errata: Publs. Math. Inst. Hautes Etudes Scient., No. 16, 131?132 (1963).
[106] H. Grauert, ?Über Modifikationen und exzeptionelle analytische Mengen,? Math. Ann.,146, No. 4, 331?368 (1962). · Zbl 0173.33004 · doi:10.1007/BF01441136
[107] H. Grauert and H. Kerner, ?Approximation von holomorphen Schnittflächen in Faserbündeln mit homogener Faser,? Arch. Math.,14, Nos. 4?5, 328?333 (1963). · Zbl 0113.29102 · doi:10.1007/BF01234962
[108] H. Grauert and O. Riemenschneider, ?Kählersche Mannigfaltigkeiten mit hyper-q-konvexem Rand,? in: Problems in Analysis, Symposium in Honor of S. Bochner, 1969, Princeton (1970), pp. 61?79. · Zbl 0211.10302
[109] H. Grauert and O. Riemenschneider, ?Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Raumen,? Lect. Notes Math.,155, 97?109 (1970). · Zbl 0202.07801 · doi:10.1007/BFb0060317
[110] H. Grauert and O. Riemenschneider, ?Verschwindugssätze für analytische Kohomologiegruppen auf komplexen Räumen,? Inv. Math.,11, No. 4, 263?292 (1970). · Zbl 0202.07602 · doi:10.1007/BF01403182
[111] R. E. Greene and H. Wu, ?Curvature and complex analysis,? Bull. Am. Math. Soc.,77, No. 6, 1045?1049 (1971). · Zbl 0225.32010 · doi:10.1090/S0002-9904-1971-12856-2
[112] R. E. Greene and H. Wu, ?Curvature and complex analysis. II,? Bull. Am. Math. Soc.,78, No. 5, 866?870 (1972). · Zbl 0258.32003 · doi:10.1090/S0002-9904-1972-13064-7
[113] R. E. Greene and H. Wu, ?Curvature and complex analysis. III,? Bull. Am. Math. Soc.,79, No. 3, 606?608 (1973). · Zbl 0258.32004 · doi:10.1090/S0002-9904-1973-13223-9
[114] R. E. Greene and H. Wu, ?A theorem in complex geometric function theory,? in: Value-Distribution Theory, Part A, N.Y. (1974), pp. 145?167.
[115] R. E. Greene and H. Wu, ?Some function-theoretic properties of noncompact Kähler manifolds,? in: Proc. Symp. Pure Math., Stanford, Calif., 1973, Vol. 27, p. 2, Providence (1975), pp. 33?41.
[116] P. A. Griffiths, ?The extension problem in complex analysis. II: embeddings with positive normal bundle,? Am. J. Math.,88, No. 2, 366?446 (1966). · Zbl 0147.07502 · doi:10.2307/2373200
[117] P. A. Griffiths, ?Hermitian differential geometry and the theory of positive and sample holomorphic vector bundles,? J. Math. Mech.,14, No. 1, 117?140 (1965). · Zbl 0134.39703
[118] P. A. Griffiths, ?Hermitian differential geometry, Chern classes and positive vector bundles,? Global Analysis, Papers in Honor of K. Kodaira, Tokyo, 1969, pp. 185?251.
[119] A. Grothendieck, ?Technique de construction en geometrie analytique. V. Fibres vectoriels, fibres projectifs, fibres en drapeaux,? Semin. H. Cartan, Ecole Norm. Super., 1960?61, 13 annee, fasc. 1, Paris, 1962, pp. 12/1?12/15.
[120] A. Grothendieck, ?Technique de construction en geometrie analytique. VIII. Rapport sur les theoremes de finitude de Grauert et Remmert,? Semin. H. Cartan. Ecole Norm. Super., 1960?61, 13 annee, fasc. 2, Paris, 1962, pp. 15/1?15/10.
[121] L. Gruman, ?The Levi problem in certain infinite dimensional vector spaces,? Ill. J. Math.,18, No. 1, 20?26 (1974). · Zbl 0276.32017
[122] L. Gruman, ?Le probleme de Levi in dimension infinie,? Colloq. Int. CNRS, No. 208, 65?69 (1974). · Zbl 0303.32022
[123] R. C. Gunning and H. Rossi, Analytic Functions of Several Complex Variables, N.Y. (1965). · Zbl 0141.08601
[124] Harita Mitsuru, ?Continuation of meromorphic functions in a domain of the Cartesian product of denumerable family of complex planes,? Mem. Fac. Sci. Kyushu Univ. A,29, No. 2, 229?233 (1975). · Zbl 0318.32006
[125] R. Hartshorne, ?Ample vector bundles,? Publs. Math. Inst. Hautes Etudes Scient., No. 29, 319?350 (1966). · Zbl 0173.49003
[126] R. Hartshorne, ?Ample subvarieties of algebraic varieties,? Lect. Notes Math.,156, 1?259 (1970). · Zbl 0208.48901 · doi:10.1007/BFb0067840
[127] R. Hartshorne, ?Varieties of small codimension in projective space,? Bull. Am. Math. Soc.,80, No. 6, 1017?1032 (1974). · Zbl 0304.14005 · doi:10.1090/S0002-9904-1974-13612-8
[128] R. Harvey and R. O. Wells, ?Compact holomorphically convex subsets of a Stein manifold,? Trans. Am. Math. Soc.,136, 509?516 (1969). · Zbl 0175.37204 · doi:10.1090/S0002-9947-1969-0235158-8
[129] S. Hayes, ?Homotopie für Okasche Paare von Garben homogener Räume,? Math. Ann.,207, No. 3, 181?212 (1974). · Zbl 0264.32007 · doi:10.1007/BF01350598
[130] S. Hayes, ?Approximation für Okasche Paare von Garben homogener Räume,? Manuscr. Math.,13, No, 2, 153?173 (1974). · Zbl 0299.32010 · doi:10.1007/BF01411493
[131] S. Hayes, ?Über einige lokale Homotopieeigenschaften für reell- und komplex-analytische Okasche Paare,? Manuscr. Math.,15, No. 2, 193?209 (1975). · Zbl 0439.32012 · doi:10.1007/BF01213788
[132] E. R. Heal and M. P. Windham, ?Finitely generated F-algebras with applications to Stein manifolds,? Pac. J. Math.,51, No. 2, 459?465 (1974). · Zbl 0293.46035 · doi:10.2140/pjm.1974.51.459
[133] Y. Hervier, ?Sur le probleme de Levi pour les espaces etales banachiques,? C. R. Acad, Sci.,275, No. 18, A821-A824 (1972). · Zbl 0243.32018
[134] Y. Hervier, ?Su le probleme de Levi banachique,? Lect. Notes Math.,410, 18?27 (1974). · doi:10.1007/BFb0066037
[135] Hirnoaka Heisuke and H. Rossi, ?On the equivalence of imbeddings of exceptional complex spaces,? Math. Ann.,156, No. 4, 318?333 (1964).
[136] A. Hirschowitz, ?Sur la non-plongement des varietes analytiques banachiques reelles,? C. R. Acad. Sci.,269, No. 18, A844-A846 (1969). · Zbl 0205.12203
[137] A. Hirschowitz, ?Sur l’approximation des hypersurfaces,? Ann. Scuola Norm. Super. Pisa. Fis. Mat.,25, No. 1, 47?58 (1971). · Zbl 0208.35105
[138] A. Hirschowitz, ?Un exemple concernant le prolongement analytique,? C. R. Acad. Sci.,275, No. 23, A1231-A1233 (1972). · Zbl 0246.32014
[139] A. Hirschowitz, ?Surs certains fibres a base et fibre de Stein,? C. R. Acad. Sci.,276, No. 13, A925-A927 (1973); Errata: C. R. Acad. Sci.,278, No. 2, A89?A91 (1974).
[140] A. Hirschowitz, ?Pseudoconvexite au-dessus d’espaces plus ou moins homogenes,? Inv. Math.,26, No. 4, 303?322 (1974). · Zbl 0275.32009 · doi:10.1007/BF01425555
[141] A. Hirschowitz, ?Entre les hypersurfaces et les ensembles pseudoconcaves,? Ann. Scuola Norm. Super. Pisa. Sci. Fis. Mat.,27, No. 4, 873?887 (1973). · Zbl 0343.32020
[142] A. Hirschowitz, ?Domaines de Steinet fonctions holomorphes bornes,? Math. Ann.,213, No. 2, 185?193 (1975). · Zbl 0284.32011 · doi:10.1007/BF01343951
[143] K. Hoffman and H. Rossi, ?The minimum boundary for an analytic polyhedron,? Pac. J. Math.,12, No. 4, 1347?1353 (1962). · Zbl 0154.33305 · doi:10.2140/pjm.1962.12.1347
[144] L. Hörmander, An Introduction to Complex Analysis in Several Variables, American Elsevier, New York (1973).
[145] A. Howard, ?On the compactification of a Stein surface,? Math. Ann.,176, No. 3, 221?224 (1968). · Zbl 0182.11102 · doi:10.1007/BF02052827
[146] A. Howard and B. Smith, ?Kähler surfaces of non-negative curvature,? J. Diff. Geom.,5, Nos. 3?4 491?502 (1971). · Zbl 0227.53021 · doi:10.4310/jdg/1214430011
[147] A. T. Huckleberry, ?The Levi problem on pseudoconvex manifolds which are not strongly pseudoconvex,? Math. Ann.,219, No. 2, 127?137 (1976). · Zbl 0313.32017 · doi:10.1007/BF01351896
[148] A. T. Huckleberry and R. Nirenberg, ?On a class of complex spaces intermediate to Stein and compact,? Bull. Am. Math. Soc.,78, No. 5, 852?853 (1972). · Zbl 0256.32005 · doi:10.1090/S0002-9904-1972-13059-3
[149] A. T. Huckleberry and R. Nirenberg, ?On k-pseudoflat complex spaces,? Math. Ann.,200, No. 1, 1?10 (1973). · Zbl 0237.32007 · doi:10.1007/BF01578288
[150] L. P. Hunt, ?Locally holomorphic sets and the Levi form,? Pac. J. Math.,42, No. 3, 681?688 (1972). · Zbl 0216.35902 · doi:10.2140/pjm.1972.42.681
[151] Iitaka Shigeru, ?On some new birational invariants of algebraic varieties and their application to rationality of certain algebraic varieties of dimension 3,? J. Math. Soc. Jpn.,24, No. 3, 384?396 (1972). · Zbl 0236.14015 · doi:10.2969/jmsj/02430384
[152] B. Josefson, ?A counterexample in the Levi problem,? Lect. Notes Math.,364, 168?177 (1974). · Zbl 0285.32017 · doi:10.1007/BFb0069016
[153] Kajiwara Joji, ?Notes on holomorphically convex complex spaces,? J. Math. Soc. Jpn.,15, No. 4, 437?442 (1963). · Zbl 0129.29702 · doi:10.2969/jmsj/01540437
[154] Kajiwara Joji, ?Some characterizations of Stein manifolds through the notion of locally regular boundary points,? Kodai Math. Sem. Repts.,16, No. 4, 191?198 (1964). · Zbl 0146.10902 · doi:10.2996/kmj/1138844946
[155] Kajiwara Joji, ?On Thullen’s example of a Cousin-II domain,? Sci. Repts. Kanazawa Univ.,9, No. 1, 1?8 (1964). · Zbl 0200.00064
[156] Kajiwara Joji, ?On the limit of a monotonous sequence of Cousin’s domains,? J. Math. Soc. Jpn.,17, No. 1, 36?46 (1965). · Zbl 0146.11002 · doi:10.2969/jmsj/01710036
[157] Kajiwara Joji, ?On the equivalence of local holomorphy and local holomorphic convexity in two-dimensional normal complex spaces,? Kodai Math. Semin. Repts.,18, No. 1, 8?15 (1966). · Zbl 0158.08501 · doi:10.2996/kmj/1138845159
[158] Kajiwara Joji, ?On weak Poincare problem,? Mem. Fac. Sci. Kyushu Univ. A,22, No. 1, 9?17 (1968).
[159] Kajiwara Joji, ?Domain with many vanishing cohomology sets,? Kodai Math. Semin. Repts.,26, 258?266 (1975). · Zbl 0305.32009 · doi:10.2996/kmj/1138847009
[160] Kajiwara Joji, ?Le principe d’Oka pour certains espaces de dimension infinie,? C. R. Acad. Sci.,280, No. 16, A1055-A1056 (1975). · Zbl 0313.32038
[161] Kajiwara Joji, ?Le principe d’Oka pour espaces vectoriels munis de la topologie f-ouverte,? Mem. Fac. Sci. Kyushu Univ. A,29, No. 2, 361?370 (1975). · Zbl 0333.32026
[162] Kajiwara Joji, ?Les espaces projectifs complexes de dimension infinie,? Mem. Fac. Sci. Kyushu Univ. A,30, No. 1, 123?133 (1976). · Zbl 0322.32003
[163] Kajiwara Joji and Kazama Hideaki, ?Continuation and quotient representation of meromorphic functions,? Mem. Fac. Sci. Kyushu Univ. A,25, No. 1, 10?20 (1971). · Zbl 0216.35901
[164] Kajiwara Joji and Kazama Hideaki, ?Two dimensional complex manifold with vanishing cohomology set,? Math. Ann.,204, No. 1, 1?12 (1973). · Zbl 0259.32005 · doi:10.1007/BF01431485
[165] Kajiwara Joji and Yoshida Mamoru, ?Note on Cauchy-Riemann equation,? Mem. Fac. Sci. Kyushu Univ. A,22, No. 1, 18?22 (1968). · Zbl 0177.13501
[166] Kasahara Kenkiti, ?On Hartogs-Osgood’s theorem for Stein spaces,? J. Math. Soc. Jpn.,17, No. 3, 297?312 (1965). · Zbl 0143.30203 · doi:10.2969/jmsj/01730297
[167] B. Kaup, ?Relationen auf komplexen Räumen,? Comment. Math. Helv.,46, No. 1, 46?64 (1971). · doi:10.1007/BF02566827
[168] Kazama Hideaki, ?On pseudoconvexity of complex ableian Lie groups,? J. Math. Soc. Jpn.,25, No. 2, 329?333 (1973). · Zbl 0254.32021 · doi:10.2969/jmsj/02520329
[169] Kazama Hideaki, ?Approximation theorem and application to Nakano’s vanishing theorem for weakly 1-complete manifolds,? Mem. Fac. Sci. Kyushu Univ. A,27, No. 2, 221?240 (1973). · Zbl 0276.32019
[170] Kazama Hideaki, ?On pseudoconvexity of complex Lie groups,? Mem. Fac. Sci. Kyushu Univ. A,27, No. 2, 241?247 (1973). · Zbl 0276.32020
[171] Kazama Hideaki, ?Existence and approximation theorems on a weakly 1-complete analytic space,? Manuscr. Math.,19, No. 1, 57?74 (1976). · Zbl 0356.32008 · doi:10.1007/BF01172338
[172] H. Kerner, ?Über die Fortsetzung holomorphen Abbildungen,? Arch. Math.,11, No. 1, 44?49 (1960). · Zbl 0095.06303 · doi:10.1007/BF01236905
[173] H. Kerner, ?Deformierbare Singularitäten,? Math. Ann., _199, No. 4, 337?344 (1972). · Zbl 0235.32011 · doi:10.1007/BF01431484
[174] Kimura Ikuo, ?Sur le theoreme de la continuite dans l’espace de deux variables complexes,? Proc. Jpn. Acad.,41, No. 7, 535?540 (1965). · Zbl 0145.09301 · doi:10.3792/pja/1195522335
[175] Kimura Ikuo, ?Sur le theoreme de la continuite dans l’espace de deux variables complexes. II,? Proc. Jpn. Acad.,42, No. 2, 131?135 (1966). · doi:10.3792/pja/1195522132
[176] Kimura Ikuo, ?Sur le theoreme de la continuite dans l’espace de deux variables complexes. III,? Proc. Jpn. Acad.,42, No. 2, 125?130 (1966). · Zbl 0161.27402 · doi:10.3792/pja/1195522131
[177] Kimura Ikuo, ?Sur le theoreme de la continuite dans l’espace de deux variables complexes. IV,? Proc. Jpn. Acad.,42, No. 2, 131?135 (1966). · doi:10.3792/pja/1195522132
[178] Kimura Ikuo, ?Sur le theoreme de la continuite dans l’espace de deux variables complexes. V,? Proc. Jpn. Acad.,42, No. 3, 210?212 (1966). · doi:10.3792/pja/1195522076
[179] Kimura Ikuo, ?Sur la pseudoconvexite par rapport a une direction. I,? Proc. Jpn. Acad.,42, No. 6, 560?565 (1966). · Zbl 0158.32802 · doi:10.3792/pja/1195521929
[180] Kimura Ikuo, ?Sur la pseudoconvexite par rapport a une direction. II,? Proc. Jpn. Acad.,42, No. 6, 566?570 (1966). · Zbl 0158.32802 · doi:10.3792/pja/1195521930
[181] Kimura Ikuo, ?Sur la theoreme de la continuite,? Osaka J. Math.,5, No. 2, 243?271 (1968).
[182] Kiyosawa Takemitsu, ?On the extension of holomorphic functions for a complex manifold,? Sci. Rep. Tokyo Kyoiku Daigaku,A9, Nos. 220?231 (1968).
[183] Kiyosawa Takemitsu, ?On the Levi s-convex sets in complex spaces,? Sci. Rep. Tokyo Kyoiku Daigaku,10, Nos. 249?262, 168?177 (1969).
[184] Kiyosawa Takemitsu, ?On the dimension of the cohomology for Levi q-convex spaces,? Sci. Rep. Tokyo Kyoiku Daigaku, Sec. A,10, Nos. 263?274, 223?233 (1970).
[185] Kiyosawa Takemitsu, ?On the Levi q-convex spaces,? Sci. Rep. Tokyo Kyoiku Daigaku, Sec. A,10, Nos. 263?274, 241?244 (1970). · Zbl 0685.46053
[186] Kiyosawa Takemitsu, ?Some equivalent relations of q-convex domains in Cn,? Sci. Rep. Tokyo Kyoiku Daigaku, Sec. A,10, Nos. 263?274, 245?249 (1970).
[187] K. Knorr, ?Die Endlichkeitssätze für q-konvexe und q-konkave Abbildungen und einige Anwendungen,? Espaces Analytiques, Semin. Inst. Math. Acad. RSR, Bucarest (1971), pp. 9?15. · Zbl 0222.32007
[188] K. Knorr and M. Schneider, ?Relativexzeptionelle analytische Mengen,? Math. Ann.,193, No. 3, 238?254 (1971). · Zbl 0222.32008 · doi:10.1007/BF02052395
[189] Kobayashi Shoshichi, ?Negative vector bundles and complex Finsler structures,? Nagoya Math. J.,57, 153?166 (1975). · Zbl 0326.32016 · doi:10.1017/S0027763000016615
[190] Kobayashi Shoshichi and Ochiai Takushiro, ?On complex manifolds with positive tangent bundles,? J. Math. Soc. Jpn.,22, No. 4, 499?525 (1970). · Zbl 0197.36003 · doi:10.2969/jmsj/02240499
[191] Kobayashi Shoshichi and Ochiai Takushiro, ?Compact complex manifolds with positive tangent bundle,? in: Differential Geometry (in Honor of K. Yano), Tokyo (1972), pp. 221?232. · Zbl 0249.32005
[192] Kobayashi Shoshichi and Ochiai Takushiro, ?Three-dimensional compact Kähler manifolds with positive holomorphic bisectional curvature,? J. Math. Soc. Jpn.,24, No. 3, 465?480 (1972). · Zbl 0234.53051 · doi:10.2969/jmsj/02430465
[193] Kobayashi Shoshichi and Wu Hung-Hung-Hsi, ?On holomorphic sections of certain hermitian vector bundles,? Math. Ann.,189, No. 1, 1?4 (1970). · Zbl 0189.52201 · doi:10.1007/BF01350196
[194] Kodaira Kunihiko, ?On a differential geometric method in the theory of analytic stacks,? Proc. Nat. Acad. Sci. USA,39, No. 12, 1268?1273 (1953). · Zbl 0053.11701 · doi:10.1073/pnas.39.12.1268
[195] Kodaira Kunihiko, ?On Kähler varieties of restricted type,? Ann. Math.,60, No. 1, 28?48 (1954). · Zbl 0057.14102 · doi:10.2307/1969701
[196] J. J. Kohn, ?Convexity and pseudo-convexity,? Lect. Notes Math.,392, 195?202 (1974). · Zbl 0298.32010 · doi:10.1007/BFb0064123
[197] J. J. Kohn, ?An example of a strange three-dimensional surface in C2,? in: Global Anal. Appl. Lect. Int. Semin. Course Trieste 1972, Vol. 2, Vienna (1974), pp. 323?327.
[198] J. J. Kohn and L. Nirenberg, ?A pseudo-convex domain not admitting a holomorphic support function,? Math. Ann.,201, No. 3, 265?268 (1973). · Zbl 0248.32013 · doi:10.1007/BF01428194
[199] K. Königsberger, ?Ein Satz über die q-Vollständigkeit lokal trivialer Faserungen,? Sitzungsber. Bayer. Akad. Wiss. Math.-Naturwiss. Kl., München, 31?37 (1969).
[200] N. Kuhlmann, ?Algebraic function fields on complex analytic spaces,? Proc. Conf. Complex Analysis, Minneapolis, 1964, Berlin et al. (1965), pp. 155?172.
[201] N. Kuhlmann, ?On the coherence of direct images,? Expaces Analytiques, Semin. Inst. Math. Acad. RSR, Bucarest (1971), pp. 71?94.
[202] N. Kuhlmann, ?Sur la coherence des images directes,? Lect. Notes Math.,409, 347?356 (1974). · Zbl 0313.32026 · doi:10.1007/BFb0068110
[203] K. Langmann, ?Fortsetzbarkeit von Cousinverteilungen,? Arch. Math.,23, No. 5, 494?499 (1972). · Zbl 0247.32007 · doi:10.1007/BF01304921
[204] K. Langmann, ?Endliche Erzeugbarkeit im Ring aller holomorphen Funktionen,? Manuscr. Math.,19, No. 4, 375?383 (1976). · Zbl 0353.32019 · doi:10.1007/BF01278925
[205] K. Langmann and W. Lütkebohmert, ?Cousinverteilungen und Fortsetzungssätze,? Lect. Notes Math.,367, VI, 1974.
[206] H. B. Laufer, ?On Serre duality and envelopes of holomorphy,? Trans. Am. Math. Soc.,128, No. 3, 414?436 (1967). · Zbl 0166.33903 · doi:10.1090/S0002-9947-1967-0222341-9
[207] H. B. Laufer, ?Imbedding annuli in C2,? J. Anal. Math.,26, 187?215 (1973). · Zbl 0286.32017 · doi:10.1007/BF02790429
[208] H. B. Laufer, ?On the infinite dimensionality of the Dolbeault cohomology groups,? Proc. Am. Math. Soc.,52, 293?296 (1975). · Zbl 0314.32008 · doi:10.1090/S0002-9939-1975-0379887-2
[209] P. Le Barz, ?Sur les voisinages tubulaires en Geometrie Analytique,? Math. Ann.,215, No. 1, 83?95 (1975). · Zbl 0333.32013 · doi:10.1007/BF01351794
[210] P. Le Barz, ?A propos des revetements ramifies d’espaces de Stein,? Math. Ann.,222, No. 1, 63?69 (1976). · Zbl 0328.32012 · doi:10.1007/BF01418244
[211] J. Le Potier, ?Une propriete topologique des espaces q-convexes,? Bull. Soc. Math. Fr.,98, No, 4, 319?328 (1970). · Zbl 0204.56501
[212] J. Le Potier, ?Theoremes d’annulation en cohomologie,? C. R. Acad. Sci.,276, No. 7, A535-A537 (1973). · Zbl 0249.32021
[213] J. Le Potier, ?Problemes d’extension de classes de cohomologie,? Asterisque, No. 17, 79?109 (1974). · Zbl 0308.32020
[214] J. Le Potier, ?’Vanishing theorem’ pour un fibre vectoriel holomorphe positif de rang quelconque,? in: Global Anal. Appl., Lect. Int. Semin. Course, Trieste, Vol. 3, Vienna (1972), pp. 1?12.
[215] J. Le Potier, ?’Vanishing theorem’ pour un fibre vectoriel holomorphe positif de rang quelconque,? Bull. Soc. Math. Fr., 1974, Suppl., No. 38, pp. 107?119. · Zbl 0293.32024
[216] J. Le Potier, ?Annulation de la cohomologie a valeurs dans un fibre vectoriel holomorphe positif de rang quelconque,? Math. Ann.,218, No. 1, 35?53 (1975). · Zbl 0313.32037 · doi:10.1007/BF01350066
[217] P. Lelong, Fonctions Plurisousharmoniques et Formes Differentielles Positives, Paris-London-N.Y. (1968). · Zbl 0195.11603
[218] Ling Hsu-Shih, ?Extending families of pseudoconcave complex spaces,? Math. Ann.,204, No. 1, 13?48 (1973). · Zbl 0236.32007 · doi:10.1007/BF01431486
[219] J. Litwin, ?Complex de Dolbeault sur les varietes de Stein,? Lect. Notes Math.,410, 67?76 (1974). · Zbl 0302.32017 · doi:10.1007/BFb0066040
[220] B. Malgrange, ?La cohomologie d’une variete analytique complexe a bord pseudo-convexe n’est pas necessairement separee,? C. R. Acad. Sci.,280, No. 3, A93-A95 (1975). · Zbl 0298.32004
[221] G. Maltsiniotis, ?Precise vanishing theorem,? Asterisque, No. 17, 51?67 (1974). · Zbl 0302.32027
[222] A. Markoe, ?Invariance of holomorphic convexity under proper mappings,? Math. Ann.,217, No. 3, 267?270 (1975). · Zbl 0298.32008 · doi:10.1007/BF01436179
[223] A. Markoe and H. Rossi, ?Families of strongly pseudoconvex manifolds,? Lect. Notes Math.,184, 182?207 (1971). · Zbl 0215.43201 · doi:10.1007/BFb0059285
[224] M. C. Matos, ?Sur l’enveloppe d’holomorphie des domaines de Riemann sur un produit denombrable de droites,? C. R. Acad. Sci.,271, No. 15, A727-A728 (1970). · Zbl 0198.46101
[225] M. C. Matos, ?The envelope of holomorphy of Riemann domains over a countable product of complex planes,? Trans. Am. Math. Soc.,167, 379?387 (1972). · Zbl 0217.16101 · doi:10.1090/S0002-9947-1972-0301235-6
[226] Matsugu Yasuo, ?The Levi problem for a product manifold,? Pac. J. Math.,46, No. 1, 231?233 (1973). · Zbl 0241.32007 · doi:10.2140/pjm.1973.46.231
[227] Matsushima Yozo, ?Holomorphic immersions of a compact Kähler manifold into complex tori,? J. Diff. Geom.,9, No. 2, 309?328 (1974). · Zbl 0284.57017 · doi:10.4310/jdg/1214432296
[228] Matsushima Yozo and W. Stoll, ?Ample vector bundles on compact complex spaces,? Rice Univ. Stud.,59, No. 2, 71?107 (1973). · Zbl 0276.32014
[229] T. Meis, ?Die minimale Blätterzahl der Konkretisierung einer kompakten Riemannschen Fläche,? Schriftenreihe Math. Inst. Univ. Munster, 1960, 16. · Zbl 0093.07603
[230] A. Milani and C. Rea, ?Geometry and function algebra on pseudoflat manifolds,? Ann. Scuola Norm. Super. Pisa, Sci. Fis. Mat.,26, No. 3, 695?709 (1972). · Zbl 0272.57014
[231] Miyagi Mitsuhiro, ?Riemann domains over a countable product of complex planes,? Mem. Fac. Sci. Kyushu Univ. A,29, No. 2, 279?286 (1975). · Zbl 0445.58003
[232] Mori Yasuko, ?A complex manifold with vanishing cohomology sets,? Mem. Fac, Sci. Kyushu Univ. A,26, No. 2, 179?191 (1972). · Zbl 0243.32012
[233] J. Morrow and Kodaira Kunihiko, Complex Manifolds, N.Y. (1971). · Zbl 0325.32001
[234] J. Morrow and H. Rossi, ?Some theorems of algebraicity for complex spaces,? J. Math. Soc. Jpn.,27, No. 2, 167?183 (1975). · Zbl 0306.32003 · doi:10.2969/jmsj/02720167
[235] Nakano Shigeo, ?On complex analytic vector bundles,? J. Math. Soc. Jpn.,7, No. 1, 1?12 (1955). · Zbl 0068.34403 · doi:10.2969/jmsj/00710001
[236] Nakano Shigeo, ?On the inverse of monoidal transformation,? Publs. Res. Inst. Math. Sci.,6, No. 3, 483 (1971). · Zbl 0234.32017
[237] Nakano Shigeo, ?On the extension of positive vector bundles,? Math. Jpn.,17, No. 1, 33?38 (1972). · Zbl 0241.32010
[238] Nakano Shigeo, ?Vanishing theorems for weakly 1-complete manifolds,? Number Theory, Alg. Geometry and Comm. Algebra in Honor of Y. Akizuki, Tokyo, 1973, pp. 169?179.
[239] Nakano Shigeo, ?Vanishing theorems for weakly 1-complete manifolds. II,? Publs. Res. Inst. Math. Sci.,10, No. 1, 101?110 (1974). · Zbl 0298.32019 · doi:10.2977/prims/1195192175
[240] Narasimhan Ramabhadran, ?Eine geometrische Eigenschaft von Rungeschen Gebieten,? Math. Ann.,200, 293?306 (1973). · Zbl 0235.32009 · doi:10.1007/BF01428261
[241] Nishino Toshio, ?Sur les ensembles pseudoconcaves,? J. Math. Kyoto Univ.,1, No. 2, 225?245 (1961/1962).
[242] F. Norguet, ?Theoremes de finitude pour la cohomologie des espaces complexes (d’apres Aldo Andreotti et Hans Grauert),? Semin. Bourbaki, Secret. Math., 1961?1962, annee, 14, No. 2, Paris, 234/1?234/15 (1962).
[243] F. Norguet, ?Probleme de Levi,? Semin. analyse P. Lelong, Fac. sci. Paris, annee 4, Paris, 6/1?6/38 (1962).
[244] F. Norguet, ?Remarques sur la cohomologie des varietes analytiques complexes,? Bull. Soc. Math. Fr.,100, No. 4, 435?447 (1972). · Zbl 0248.32009 · doi:10.24033/bsmf.1747
[245] F. Norguet, ?Remarques sur la cohomologie des varietes analytiques complexes,? Lect. Notes Math.,409, 162?175 (1974). · Zbl 0307.32009 · doi:10.1007/BFb0068098
[246] P. Noverraz, Pseudo-Convexite, Convexite Polynomiale et Domains d’Holomorphie en Dimension Infinite, North-Holland Math. Studies, No. 3, Amsterdam-London-N. Y. (1973).
[247] P. Noverraz, ?Pseudo-convexite et completion holomorphe en dimension infinie,? Colloq. Int. CNRS, No. 208, 172?179 (1974). · Zbl 0328.46043
[248] P. Noverraz, ?Pseudo-convexite et base de Schauder dans les ELC,? Lect. Notes Math.,474, 63?82 (1975). · Zbl 0323.32015 · doi:10.1007/BFb0077399
[249] P. Noverraz, ?Le probleme de Levi en dimension infinie,? Bull. Soc, Math. Fr., Mem. No. 46, 73?82 (1976). · Zbl 0334.46050
[250] Ochiai Takushiro, ?On Kähler manifolds with positive holomorphic bisectional curvature,? Proc. Symp. Pure Math., Stanford, Calif., 1973, Vol. 27, Part 2, Providence (1975), pp. 113?123. · Zbl 0321.53053
[251] Oka Kiyoshi, ?Sur les fonctions analytiques de plusieurs variables. X. Une mode nouvelle engendrent les domains pseudoconvexes,? Jpn. J. Math.,32, 1?12 (1962). · Zbl 0138.06501
[252] P. J. de Paepe, ?Closures of open analytic polyhedra,? Compos. Math.,28, No. 3, 333?341 (1974). · Zbl 0292.32010
[253] P. Pflug, ?Quadratintegrable holomorphe Funktionen und die Serre-Vermutung,? Math. Ann.,216, No. 3, 285?288 (1975). · Zbl 0294.32009 · doi:10.1007/BF01430969
[254] P. Pflug, ?Glatte Holomorphiegebiete mit plurisubharmonischer innerer Randfunktionen sind Banach-Stein,? Ark. Mat.,14, No. 1, 55?58 (1976). · Zbl 0319.32028 · doi:10.1007/BF02385823
[255] R. P. Pflug, ?Holomorphiegebiete, pseudokonvexe Gebiete und das Levi-Problem,? Lect. Notes Math.,432 (1975).
[256] R. Pomes, ?Solutiondu probleme de Levi dans les espaces de Silva a base,? C. R. Acad. Sci.,278, No. 10, A707-A710 (1974). · Zbl 0278.32021
[257] N. Popa, ?Sur le probleme de Levi dans les espaces de Silva a base,? C. R. Acad. Sci.,277, No. 4, A211-A214 (1973). · Zbl 0261.32006
[258] D. Prill, ?Über lineare Faserräume und schwach negative holomorphe Geradenbündel,? Math. Z.,105, No. 4, 313?326 (1968). · Zbl 0164.09404 · doi:10.1007/BF01125975
[259] J. P. Ramis, ?Some recent results and open problems in infinite-dimensional analytic geometry,? Lect. Notes Math.,364, 186?195 (1974). · doi:10.1007/BFb0069018
[260] J. P. Ramis, ?Theoremes de dualite en geometrie analytique complexe et applications,? Colloq. Int. CNRS, No. 208, 211?220 (1974).
[261] J. P. Ramis, ?Theoremes de finitude pour les espaces p-convexes, q-concaves et (p, q)-convexes-concaves,? Lect. Notes Math.,409, 357?393 (1974). · Zbl 0303.32017 · doi:10.1007/BFb0068111
[262] J. P. Ramis, ?Theoremes de separation et de finitude pour l’homologie et la cohomologie des espaces (p, q)-convexes-concaves,? Ann. Scuola Norm. Super. Pisa, Sci. Fis. Mat.,27, No. 4, 933?997 (1973).
[263] J. P. Ramis and G. Ruget, ?Dualite relative et images directes en geometrie analytique,? C. R. Acad. Sci.,276, No. 12, A843-A845 (1973). · Zbl 0255.32006
[264] J. P. Ramis and C. Ruget, ?Residues et dualite,? Invent. Math.,26, No. 2, 89?131 (1974). · Zbl 0304.32007 · doi:10.1007/BF01435691
[265] J. P. Ramis, G. Ruget, and J. L. Verdier, ?Dualite relative en geometrie analytique complexe,? Invent. Math.,13, No. 4, 261?283 (1971). · Zbl 0218.14010 · doi:10.1007/BF01406078
[266] K. J. Ramspott and K. Stein, ?Über Rungesche Paare komplexer Manigfaltigkeiten,? Math. Ann.,145, No. 5, 444?463 (1962). · Zbl 0118.30303 · doi:10.1007/BF01471089
[267] C. Rea, ?Bouts et convexite de Levi,? Boll. Unione Mat. Ital.,1, No. 6, 760?766 (1968).
[268] C. Rea, ?Varieta pseudo-piatte,? in: Symp. Math. Inst. Naz. Alta Mat. Conv. Nov. 1971?Maggio 1972, Vol. 11, London-New York (1973), pp. 347?354.
[269] R. Remmert, ?Neuere Ergebnisse in der komplexen Analysis,? Jahresber. Dtsch. Math.-Ver.,77, No. 2, 89?105 (1975). · Zbl 0307.32001
[270] O. Riemenschneider, ?Über den Flacheninhalt analytischer Mengen und die Erzeugung k-pseudokonvexer Gebiete,? Invent. Math.,2, No. 5, 307?311 (1967). · Zbl 0148.32101 · doi:10.1007/BF01428898
[271] O. Riemenschneider, ?Halbstetigkeitssätze für 1-konvexe holomorphe Abbildungen,? Math. Ann.,192, No. 3, 216?226 (1971). · Zbl 0203.38904 · doi:10.1007/BF02052873
[272] O. Riemenschneider, ?Characterizing Moisezon spaces by almost positive coherent analytic sheaves,? Math. Z.,123, No. 3, 263?284 (1971). · Zbl 0218.14006 · doi:10.1007/BF01114795
[273] O. Riemenschneider, ?A generalization of Kodaira’s embedding theorem,? Math. Ann.,200, No. 1, 99?102 (1973). · Zbl 0247.32017 · doi:10.1007/BF01578295
[274] H. Rossi, ?Holomorphically convex sets in several complex variables,? Ann. Math.,74, No. 3, 470?493 (1961). · Zbl 0107.28601 · doi:10.2307/1970292
[275] H. Rossi, ?Attaching analytic spaces to an analytic space along a pseudoconcave boundary,? Proc. Conf. Complex Analysis, Minneapolis, 1964, Berlin et al., 1965, pp. 242?256.
[276] H. Rossi, ?Continuation of subvarieties of projective varieties,? Am. J. Math.,91, No. 2, 567?575 (1969). · Zbl 0184.31401 · doi:10.2307/2373526
[277] W. Rothstein, ?Zur Theorie der analytischen Mannigfaltigkeiten im Raume von n komplexen Veränderlichen,? Math. Ann.,129, No. 1, 96?138 (1955). · Zbl 0064.08001 · doi:10.1007/BF01362361
[278] W. Rothstein and H. Sperling, ?Einsetzen analytischer Flächenstücken in Zyklen auf komplexen Raumen,? Wiss. Abhandl. Arbeitsgemeinsch. Forsch. Landes Nordrhein-Westfalen,33, 531?554 (1966). · Zbl 0145.31803
[279] Sakai Eiichi, ?Problem of quotient representation and meromorphic completion,? Sci. Repts. Kanazawa Univ.,11, No. 2, 93?97 (1966). · Zbl 0200.00017
[280] M. Schneider, ?Über eine Vermutung von Hartshorne,? Math. Ann.,201, No. 3, 221?229 (1973). · Zbl 0255.32009 · doi:10.1007/BF01427944
[281] M. Schneider, ?Ein einfacher Beweis des Verschwindungssätzes für positive holomorphe Vektorraumbündel,? Manuscr. Math.,11, No. 1, 95?101 (1974). · Zbl 0275.32014 · doi:10.1007/BF01189093
[282] M. Schneider, ?Lefschetzsätze und Hyperkonvexität,? Invent. Math.,31, No. 2, 183?192 (1975). · Zbl 0313.32025 · doi:10.1007/BF01404114
[283] M. Schneider, ?Tubenumgebungen Steinscher Räume,? Manuscr. Math.,18, No. 4, 391?397 (1976). · Zbl 0343.32013 · doi:10.1007/BF01270498
[284] M. Schottenloher, ?Riemann domains: basic results and open problems,? Lect. Notes Math.,364, 196?212 (1974). · Zbl 0281.32022 · doi:10.1007/BFb0069019
[285] H. W. Schuster, ?Infinitesimale Erweiterungen komplexer Raume,? Comment. Math. Helv.,45, No. 3, 265?286 (1970). · Zbl 0206.36701 · doi:10.1007/BF02567331
[286] C. Seabury, ?Some extension theorems for regular maps of Stein manifolds,? Bull. Am. Math. Soc.,80, No. 6, 1223?1224 (1974). · Zbl 0305.32015 · doi:10.1090/S0002-9904-1974-13688-8
[287] E. Sernesi, ?Some remarks on deformations of invertible sheaves,? Boll. Unione Mat. Ital.,13-A, No. 1, 168?174 (1976). · Zbl 0354.32030
[288] J. P. Serre, ?Geometrie algebrique et geometrie analytique,? Ann. Inst. Fourier, 1955?1956,6, 1?42 (1956). · Zbl 0075.30401 · doi:10.5802/aif.59
[289] B. Shiffman, ?Extension of holomorphic maps into Hermitian manifolds,? Math. Ann.,194, No. 4, 249?258 (1971). · Zbl 0213.36001 · doi:10.1007/BF01350128
[290] B. Shiffman, ?Extension of positive holomorphic line bundles,? Bull. Am. Math. Soc.,77, No. 6, 1091?1093 (1971). · Zbl 0233.32011 · doi:10.1090/S0002-9904-1971-12881-1
[291] B. Shiffman, ?Extension of positive line bundles and meromorphic maps,? Invent. Math.,15, No. 4, 332?347 (1972). · Zbl 0223.32017 · doi:10.1007/BF01405087
[292] B. Shiffman, ?Extension of holomorphic maps,? Bull. Am. Math. Soc.,82, No. 2, 293?296 (1976). · Zbl 0334.32027 · doi:10.1090/S0002-9904-1976-14027-X
[293] Nessim Sibony, ?Fibres holomorphes et metrique de Caratheodory,? C. R. Acad. Sci.,279, No. 8, A271-A264 (1974).
[294] P. Siegfried, ?Morphismes q-convexes et images directes,? C. R. Acad. Sci.,277, No. 7, A307-A309 (1973). · Zbl 0267.32007
[295] P. Siegfried, ?Un theoreme de finitude pour les morphismes q-convexes,? Comment. Math. Helv.,49, No. 4, 417?459 (1974). · Zbl 0299.32005 · doi:10.1007/BF02566741
[296] A. Silva, ?Successioni crescenti di q-eoppie di Runge di varieta analitiche complesse,? Publs. Inst. Mat. Univ. Genova, No. 25, 1?19 (1972).
[297] A. Silva, ?A n-Runge approximation theorem,? Boll. Unione Mat. Ital,8, No. 2, 286?289 (1973).
[298] A. Silva, ?Successioni crescenti di q-coppie di Runge di varieta analitiche eomplesse,? Ann. Scuola Norm. Super. Pisa, Sci. Fis. Mat.,27, No. 3, 431?440 (1973).
[299] A. Silva, ?Behnke-Stein theorem for analytic spaces,? Pubis. Inst. Mat. Univ. Genova, No. 86, 1?17 (1973).
[300] A. Silva, ?Behnke-Stein theorem for analytic spaces,? Trans. Am. Math. Soc.,199, 317?326 (1974). · Zbl 0298.32009 · doi:10.1090/S0002-9947-1974-0367286-2
[301] A. Silva, ?Un teorema di passaggio al limite per la coomologia di una varieta analitica complessa,? Atti Accad. Naz. Lincei Cl. Sci. Fis., Mat. Nat., Rend.,56, No. 1, 43?44 (1974). · Zbl 0358.32008
[302] Siu Yum-Tong, ?Normal families of Cousin I and II data,? Tohoku Math. J.,21, No. 4, 548?557 (1969). · Zbl 0191.37802 · doi:10.2748/tmj/1178242900
[303] Siu Yum-Tong, ?A pseudoconcave generalization of Grauert’s direct image theorem. I,? Ann. Scuola Norm. Super. Pisa, Sci. Fis. Mat.,24, No. 2, 279?330 (1970). · Zbl 0195.36803
[304] Siu Yum-Tong, ?A pseudoconcave generalization of Grauert’s direct image theorem. II,? Ann. Scuola Norm. Super. Pisa, Sci. Fis. Mat.,24, No. 3, 439?489 (1970). · Zbl 0195.36803
[305] Siu Yum-Tong, ?The 1-convex generalization of Grauert’s direct image theorem,? Math. Ann.,190, No. 3, 203?214 (1971). · Zbl 0197.36101 · doi:10.1007/BF01433210
[306] Siu Yum-Tong, ?Dimensions of sheaf cohomology groups under holomorphic deformation,? Math. Ann.,192, No. 3, 203?215 (1971). · Zbl 0213.09803 · doi:10.1007/BF02052872
[307] Siu Yum-Tong, ?Generalizations of Grauert’s direct image theorem,? Lect. Notes Math.,184, 151?174 (1971). · Zbl 0213.09802 · doi:10.1007/BFb0059283
[308] Siu Yum-Tong, ?A Thullen type extension theorem for positive holomorphic vector bundles,? Bull. Am. Math. Soc.,78, No. 5, 775?776 (1972). · Zbl 0253.32016 · doi:10.1090/S0002-9904-1972-13030-1
[309] Siu Yum-Tong, ?A pseudoconvex-pseudoconcave generalization of Grauert’s direct image theorem,? Ann. Scuola Norm. Super. Pisa, Sci. Fis. Mat.,26, No. 3, 649?664 (1972). · Zbl 0248.32014
[310] Siu Yum-Tong, ?All plane domains are Banach-Stein,? Manuscr. Math.,14, No. 1, 101?105 (1974). · Zbl 0294.32010 · doi:10.1007/BF01637626
[311] Siu Yum-Tong, ?A Thullen type extension theorem for positive holomorphic vector bundles,? Colloq. Int. CNRS, No. 208, 231?234 (1974). · Zbl 0301.32027
[312] Siu Yum-Tong, ?Holomorphic fiber bundles whose fibers are bounded Stein domains with zero first Betti number,? Math. Ann.,219, No. 2, 171?192 (1976). · Zbl 0318.32010 · doi:10.1007/BF01351901
[313] Siu Yum-Tong and G. Trautmann, ?Extension of coherent analytic subsheaves,? Math. Ann.,188, No. 2, 128?142 (1970). · Zbl 0188.39204 · doi:10.1007/BF01350816
[314] G. Sorani, ?Omologia deglie spazi q-pseudoconvessi,? Ann. Scuola Norm. Super. Pisa, Sci. Fis. Mat.,16, No. 3, 299?304 (1962). · Zbl 0192.18403
[315] G. Sorani, ?Une propriete topologique des q-paires de Runge,? C. R. Acad. Sci.,256, No. 19, 3944?3945 (1963). · Zbl 0122.32001
[316] G. Sorani, ?dHomologie des q-paires de Runge,? Ann. Scuola Norm. Super. Pisa, Sci. Fis. Mat.,17, No. 4, 319?322 (1963).
[317] G. Sorani, ?Convessita e pseudoconvessita delle varieta reali e eomplesse,? Riv. Mat. Univ. Parma,7, 237?241 (1966). · Zbl 0193.23801
[318] G. Sorani and V. Villani, ?q-Complete spaces and cohomology,? Trans. Am. Math. Soc.,125, No. 3, 432?448 (1966). · Zbl 0155.40203
[319] J. Spilker, ?Algebraische Körper von automorphen Funktionen,? Math. Ann.,149, No. 4, 341?360 (1963). · Zbl 0124.29301 · doi:10.1007/BF01471127
[320] J. L. Stehle, ?Fonctionsplurisousharmoniques et convexite holomorphe de certains fibres analytiques,? C. R. Acad. Sci.,279, No. 7, 235?238 (1974).
[321] J. L. Stehle, ?Cohomologie locale sur les intersections completes et faisceaux F-quasicoherents,? C. R. Acad. Sci.,280, No. 6, A361-A364 (1975). · Zbl 0298.32005
[322] J. L. Stehle, ?Fonctions plurisousharmoniques et convexite holomorphe de certains fibres analytiques,? Lect. Notes Math.,474, 155?179 (1975). · Zbl 0309.32011 · doi:10.1007/BFb0077406
[323] J. L. Stehle, ?Faisceaux F-quasicoherents definis par echelles et resolutions,? C. R. Acad. Sci.,282, No. 24, A1437-A1440 (1976). · Zbl 0354.32019
[324] J. L. Stehle, ?Faisceaux F-quasicoherents en geometrie analytique,? Lect. Notes Math.,524, 30?53 (1976). · doi:10.1007/BFb0077996
[325] J. L. Stehle, ?Un cas particulier de faisceau F-quasicoherent avec nullite de Tor,? Lect. Notes Math.,524, 55?66 (1976). · Zbl 0354.32018 · doi:10.1007/BFb0077997
[326] K. Stein, ?Fortsetzung holomorpher Korrespondenzen,? Inv. Math.,6, No. 1, 78?90 (1968). · Zbl 0159.37701 · doi:10.1007/BF01389835
[327] S. Steiner, ?Pseudokonvexität und Levi-Tensor,? Ber. Ges. Math. Datenverarb., No. 57, 77?80 (1972).
[328] G. Stolzenberg, ?A hull with no analytic structure,? J. Math. Mech.,12, No. 1, 103?111 (1963). · Zbl 0113.29101
[329] O. Stormark, ?Some properties of compact natural sets in several complex variables,? Math. Scand.,33, No. 2, 359?374 (1973). · Zbl 0284.32010 · doi:10.7146/math.scand.a-11497
[330] B. Strehl, ?Analytische Hyperflächen mit vorgegebenen Singularitäten,? Math. Ann.,200, No. 2, 165?173 (1973). · Zbl 0255.32005 · doi:10.1007/BF01435455
[331] J. Stutz, ?Primitive elements for modules over G(V),? Duke Math. J.,41, No. 2, 329?331 (1974). · Zbl 0285.32012 · doi:10.1215/S0012-7094-74-04137-4
[332] Suzuki Masaaki, ?Note on Hartogs domains,? Mem. Fac. Sci. Kyushu Univ., A,22, No. 1, 23?30 (1968). · Zbl 0183.35101
[333] Suzuki Osamu, ?Neighborhoods of a compact non-singular algebraic curve imbedded in a 2-dimensional complex manifold,? Publs. Res. Inst. Math. Sci.,11, No. 1, 185?199 (1975). · Zbl 0319.32006 · doi:10.2977/prims/1195191691
[334] Suzuki Osamu, ?Simple proofs of Nakano’s vanishing theorem and Kazama’s approximation theorem for weakly 1-complete manifolds,? Publs. Res. Inst. Math. Sci.,11, No. 1, 201?211 (1975). · Zbl 0318.32030 · doi:10.2977/prims/1195191692
[335] Tadokoro Machio, ?Sur les ensembles pseudoconcaves generaux,? J. Math. Soc. Jpn.,17, No. 3, 281?290 (1965). · Zbl 0147.07403 · doi:10.2969/jmsj/01730281
[336] Takeuchi Shigeru, ?On completeness of holomorphic principal bundles,? Nagoya Math. J.,56, 121?138 (1975). · Zbl 0284.32020 · doi:10.1017/S0027763000016421
[337] P. Thullen, ?Bemerkungen über analytische Flächen im Raume von komplexen Veränderlichen im Zu-sammenhang mit dem zweiten Cousinschen Problem,? Math. Ann.,183, No. 1, 1?5 (1969). · Zbl 0167.36601 · doi:10.1007/BF01361258
[338] A. Tognoli, ?Una caratterizzazione dei moduli delie sezioni globali di un fascio coerente su uno spazio di Stein,? Boll. Unione Mat. Ital.,8, No. 2, 181?197 (1973). · Zbl 0291.32021
[339] G. Tomassini, ?Inviluppo d’olomorfia e spazi pseudoconcavi,? Ann. Mat. Pura Appl.,87, 59?86 (1970). · Zbl 0228.32007 · doi:10.1007/BF02411972
[340] Umemura Hiroshi, ?La dimension cohomologique des surfaces algebriques,? Nagoya Math. J.,47, 155?160 (1972). · Zbl 0223.14019 · doi:10.1017/S0027763000014975
[341] Umemura Hiroshi, ?Fibres vectoriels positifs sur une courbe elliptique,? Bull. Soc. Math. Fr.,100, No. 4, 431?433 (1972). · Zbl 0246.53056
[342] J. L. Verdier, ?Le theoreme de Le Potier,? Asterisque, No. 17, 68?78 (1974).
[343] E. Vesentini, ?Osservazioni sulle strutture fibrate analitiche,? Atti Accad. Naz. Lincei. Cl. Sci. Fis., Mat. Nat., Rend.,23, No. 5, 232?241 (1958). · Zbl 0168.44501
[344] V. Villani, ?Su alcune proprieta cohomolgiche dei fasci coerenti su unu spazio complesso,? Rend. Semin. Mat. Univ. Padova,35, Parte 1, 47?55 (1964).
[345] V. Villani, ?Fibrati vettoriali olomorfi su una varieta complessa q-completa,? Ann. Scuola Norm. Super. Pisa. Sci. Fis. Mat.,20, No. 1, 15?23 (1966).
[346] V. Villani, ?Cohomological properties of complex spaces which carry over to normalizations,? Am. J. Math.,88, No. 3, 636?645 (1966). · Zbl 0154.08502 · doi:10.2307/2373146
[347] V. Villani, ?Sulle nozione di q-completezza nella teoria delle funzioni di piu variabili complesse,? Rend. Semin. Mat. Univ. Politecn. Torino, 26, 27?32 (1966?1967). · Zbl 0179.39902
[348] V. Villani, ?Un teorema di passaggio al limite per la coomologiadeglispazi complessi,? Atti Accad. Naz. Lincei. Cl. Sci. Fis., Mat., Nat., Rend.,43, Nos. 3?4, 168?170 (1967). · Zbl 0157.40501
[349] V. Villani, ?Sulle nozione di q-convessita per glui spazi complessi non ridotti,? Rend. Semin. Mat. Univ. Padova, 1968,41, 326?331 (1969).
[350] V. Villani, ?Considerazioni sulla cohomologia degli spazi complessi,? Rend. Semin. Mat. Fis., Milano,39, 147?150 (1969). · Zbl 0226.32007 · doi:10.1007/BF02924133
[351] Watanabe Kiyoshi, ?The Levi problem for the product manifold of an open Riemann surface and a compact Riemann surface,? Mem. Fac. Sci. Kyushu Univ. A,29, No. 2, 355?359 (1975). · Zbl 0316.32002
[352] Watanabe Kiyoshi, ?Cousin domains in an algebraic surface,? Mem. Fac. Sci. Kyushu Univ. A,29, No. 2, 355?359 (1975). · Zbl 0316.32005
[353] Watar Satoru, ?Plurisubharmonic functions on Stein spaces,? Proc. K. Ned. Akad. Wet., Ser. A,78, No. 4, 321?326 (1975); Indag. Math.,37, No. 4, 321?326 (1975). · Zbl 0334.32019
[354] R. O. Wells, ?Locally holomorphic sets,? J. Analyse Math.,17, 337?345 (1966). · Zbl 0153.10201 · doi:10.1007/BF02788663
[355] R. O. Wells, ?Holomorphic hulls and holomorphic convexity of differentiable submanifolds,? Trans. Am. Math. Soc.,132, No. 1, 245?262 (1968). · Zbl 0159.37702 · doi:10.1090/S0002-9947-1968-0222340-8
[356] R. O. Wells, ?Holomorphic hulls and holomorphic convexity,? Rice Univ. Stud.,54, No. 4, 75?84 (1968). · Zbl 0177.11402
[357] R. O. Wells, ?Concerning the envelope of holomorphy of a compact differentiable submanifold of a complex manifold,? Ann. Scuola Norm. Super. Pisa, Sci. Fis. Mat.,23, No. 2, 347?361 (1969). · Zbl 0177.11403
[358] R. O. Wells, Differential Analysis on Complex Manifolds, Prentice-Hall (1973). · Zbl 0262.32005
[359] J. Wolfart, ?Automorphe Abbildungen zu pseudokonkaven Gruppen,? Math. Ann.,203, No. 4, 261?281 (1973). · Zbl 0236.32010 · doi:10.1007/BF01351907
[360] Yau Shing-Tung, ?On the curvature of compact Hermitian manifolds,? Invent. Math.,25, Nos. 3?4, 213?239 (1974). · Zbl 0299.53039 · doi:10.1007/BF01389728
[361] W. R. Zame, ?Homomorphisms or rings of germs of analytic functions,? Proc. Amer. Math, Soc.,33, No. 2, 410?414 (1972). · Zbl 0254.32016 · doi:10.1090/S0002-9939-1972-0289808-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.