×

zbMATH — the first resource for mathematics

Fat bundles and symplectic manifolds. (English) Zbl 0449.53035

MSC:
53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.)
53C05 Connections, general theory
53C20 Global Riemannian geometry, including pinching
57R20 Characteristic classes and numbers in differential topology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abraham, R; Marsden, J, Foundations of mechanics, (1978), Benjamin/Cummings Reading, Mass.,
[2] Atiyah, M.F; Hitchin, N; Singer, I.M, Self-duality in four-dimensional Riemannian geometry, (), 425-461 · Zbl 0389.53011
[3] Bérard Bergery, L, Sur certaines fibrations d’espaces homogènes riemanniennes, Compositio math., 30, 43-61, (1975) · Zbl 0304.53036
[4] Bérard Bergery, L, Oral thesis defense, (1975), Université de Paris VII
[5] \scL. Bérard Bergery, Private communication, 1980.
[6] Berger, M, Lectures on geodesics in Riemannian geometry, (1965), Tata Institute of Fundamental Research Bombay · Zbl 0165.55601
[7] \scA. Derdziński and A. Rigas, Unflat connections in 3-sphere bundles over S4, Trans. Amer. Math. Soc., in press.
[8] Gromoll, D; Meyer, W, An exotic sphere with nonnegative sectional curvature, Ann. of math., 100, 401-406, (1974) · Zbl 0293.53015
[9] Hermann, R, A sufficient condition that a mapping of Riemannian manifolds be a fibre bundle, (), 236-242 · Zbl 0112.13701
[10] Husemoller, D, Fibre bundles, (1966), McGraw-Hill New York · Zbl 0144.44804
[11] Kobayashi, S, Topology of positively-pinched Kaehler manifolds, Tôhoku math. J., 15, 2, 121-139, (1963) · Zbl 0114.37601
[12] Kobayashi, S; Nomizu, K; Kobayashi, S; Nomizu, K, ()
[13] Kostant, B, Quantization and unitary representations. I. prequantization, (), 87-208
[14] Meyers, S; Steenrod, N, The group of isometries of a Riemannian manifold, Ann. of math., 40, 400-416, (1939) · JFM 65.1415.03
[15] Milnor, J, On manifolds homeomorphic to the 7-sphere, Ann. of math., 64, 399-405, (1956) · Zbl 0072.18402
[16] O’Neill, B, The fundamental equations of a submersion, Michigan math. J., 13, 459-469, (1966) · Zbl 0145.18602
[17] Sternberg, S, Minimal coupling and the symplectic mechanics of a classical particle in the presence of a Yang-Mills field, (), 5253-5254 · Zbl 0765.58010
[18] Thurston, W.P, Some simple examples of symplectic manifolds, (), 467-468 · Zbl 0324.53031
[19] Weil, A, Introduction à l’etude des variétés Kählériennes, (1958), Hermann Paris · Zbl 0137.41103
[20] Weinstein, A, Unflat bundles and metrics of positive curvature (preliminary report), Notices amer. math. soc., 15, 527, (1968), (Abstract of 1968 M.I.T. preprint Unflat bundles)
[21] Weinstein, A, Lectures on symplectic manifolds, () · Zbl 0406.53031
[22] Rigas, A, Some bundles of non-negative curvature, Math. ann., 232, 187-193, (1978) · Zbl 0354.53039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.