×

zbMATH — the first resource for mathematics

Non-equilibrium behaviour of a many particle process: Density profile and local equilibria. (English) Zbl 0451.60097

MSC:
60K35 Interacting random processes; statistical mechanics type models; percolation theory
60G50 Sums of independent random variables; random walks
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Galves, A., Kipnis, C., Marchioro, C., Presutti, E.: Non-equilibrium measures which exhibit a temperature gradient: study of a model. Preprint IHES 1980 · Zbl 0465.60089
[2] Hammersley, J.M.: Postulates for subadditive processes. Ann. Probability 2, 652-680 (1974) · Zbl 0303.60044 · doi:10.1214/aop/1176996611
[3] Liggett, T.M.: Ergodic theorems for the asymmetric simple exclusion process. Trans. Amer. Math. Soc. 213, 237-261 (1975) · Zbl 0322.60086 · doi:10.1090/S0002-9947-1975-0410986-7
[4] Liggett, T.M.: Coupling the simple exclusion process. Ann. Probability 4, 339-356 (1976) · Zbl 0339.60091 · doi:10.1214/aop/1176996084
[5] Richardson, D.: Random growth in a tessellation. Proc. Cambridge Phil. Soc. 70, 515-528 (1974) · Zbl 0295.62094
[6] Smythe, R.T., Wierman, J.C.: First-passage percolation on the square lattice. Lecture Notes in Mathematic 671. Berlin-Heidelberg-New York: Springer 1978 · Zbl 0379.60001
[7] Saaty, Th.L.: Elements of queueing theory. New York-Toronto-London: McGraw-Hill 1961 · Zbl 0100.34203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.