×

zbMATH — the first resource for mathematics

Analytic set-valued functions and spectra. (English) Zbl 0452.46028

MSC:
46J10 Banach algebras of continuous functions, function algebras
47A10 Spectrum, resolvent
47A55 Perturbation theory of linear operators
32A30 Other generalizations of function theory of one complex variable (should also be assigned at least one classification number from Section 30-XX)
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Aupetit, B., Wermer, J.: Capacity and uniform algebras. J. Functional Analysis28, 386–400 (1978) · Zbl 0378.46045 · doi:10.1016/0022-1236(78)90095-2
[2] Aupetit, B.: Propriétés spectrales des algebres de Banach. Lecture Notes in Mathematics, Vol 735 Berlin, Heidelberg, New York: Springer 1979 · Zbl 0409.46054
[3] Basener, R.F.: A condition for analytic structure. Proc. Am. Math. Soc.36, 156–160 (1972) · Zbl 0257.46061 · doi:10.1090/S0002-9939-1972-0308789-X
[4] Bungart, L.: On analytic fiber bundles. I. Topology7, 55–68 (1968) · Zbl 0153.10202 · doi:10.1016/0040-9383(86)90015-7
[5] Hille, E., Phillips, R.S.: Functional analysis and semi-groups. Am. Math. Soc. Colloquium Publications, Vol. XXXI, Providence 1957 · Zbl 0078.10004
[6] Gamelin, T.W.: Uniform algebras. Englewood Cliffs: Prentice-Hall 1969 · Zbl 0213.40401
[7] Gunning R.C., Rossi, H.: Analytic functions of several complex variables. Englewood Cliffs: Prentice-Hall 1965 · Zbl 0141.08601
[8] Kirchberg, E.: Banach algebras whose elements have at most countable spectra, Parts, I. II. Preprints P-36/79, P-43/79, Akademie der Wissenschaften der DDR, Zentralinstitut für Mathematik und Mechanik (to appear in Studia Math.) · Zbl 0442.46034
[9] Kumagai, D.: Subharmonic functions and uniform algebras. Proc. Am. Math. Soc.78, 23–29 (1980) · Zbl 0446.46044 · doi:10.1090/S0002-9939-1980-0548077-4
[10] Nishino, T.: Sur les ensembles pseudoconcaves. J. Math. Kyoto Univ.1–2, 225–245 (1962) · Zbl 0109.05501
[11] Oka, K.: Note sur les familles de fonctions analytiques multiformes etc. J. Sci Hiroshima Univ Ser. A4, 93–98 (1934) · JFM 60.1023.03
[12] Senitchkin, V.N.: Subharmonicheskie Funktii i Analitichoskaya strukture v prostranstve maximalnich idealov ravnomernoi algebrii. Mat., Sb.108, 115–133 (1979)
[13] Słodkowski, Z.: Characterization of spectral multifunctions. Notices Am. Math. Soc. Abstract 770-B 25 (1979)
[14] Słodkowski, Z.: On subharmonicity of the capacity of the spectrum. Proc. Am. Math., Soc.81, 243–249 (1981) · Zbl 0407.46046
[15] Taylor, J.L.: A joint spectrum for several commuting operators. J. Functional Analysis6, 172–191 (1970) · Zbl 0233.47024 · doi:10.1016/0022-1236(70)90055-8
[16] Vesentini, E.: On the subharmonicity of the spectral radius. Boll. Un. Mat. Ital.4, 427–429 (1968)
[17] Vladimirov, V.S.: Methods of the theory of functions of many complex variables. Cambridge, Mass.: M.I.T. Press 1966
[18] Wermer, J.: Subharmonicity and hulls. Pacific J. Math.58, 283–290 (1975) · Zbl 0308.32011
[19] Wermer, J.: Capacity and uniform algebras. In: Proceedings of Symposia in Pure Mathematies, Vol. XXXV, Part I, 1979 · Zbl 0421.46046
[20] Wermer, J.: Potential theory and function, algebras. Expository paper submitted to Texas Tech. Math. Series, June 1980
[21] Wermer, J.: Maximum modulus algebras and singularity sets. Proc. of the Royal Soc. of Edinburgh86A. 327–331 (1980) · Zbl 0453.46041
[22] Yamaguchi, H.: Sur une uniformité des surfaces constantes d’une fonction entière de deux variables complexes. J. Math. Kyoto Univ.13, 417–433 (1973) · Zbl 0282.32002
[23] Saks, S., Zygmund, A.: Analytic functions, Second edition. Warszawa: PWN-Polish Sciencific 1965
[24] Aupetit, B.: Analytic multivalued functions in Banach algebras and uniform algebras (to appear) · Zbl 0486.46041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.