Quantum field theory techniques in graphical enumeration. (English) Zbl 0453.05035


05C30 Enumeration in graph theory
05C10 Planar graphs; geometric and topological aspects of graph theory
81T99 Quantum field theory; related classical field theories
Full Text: DOI

Online Encyclopedia of Integer Sequences:

Catalan numbers: C(n) = binomial(2n,n)/(n+1) = (2n)!/(n!(n+1)!).


[1] Koplik, J; Neveu, A; Nussinov, S, Nucl. phys. B, 123, 109, (1977)
[2] Tutte, W.T, Canad. J. math., 14, 21, (1962)
[3] Brézin, E; Itzykson, C; Parisi, G; Zuber, J.B, Commun. math. phys., 59, 35, (1978)
[4] Bessis, D, Commun. math. phys., 69, 147, (1979)
[5] Gross, D.J; Witten, E, Phys. rev. D, 21, 446, (1980)
[6] Goldschmidt, Y, CEN-saclay preprint, dph.T 79/153, (1979)
[7] J. Math. Phys., in press.
[8] Itzykson, C; Zuber, J.B, J. math. phys., 21, 441, (1980)
[9] Mehta, M.L, CEN-saclay preprint, dph.T 79/124, (1979)
[10] Commun. Math. Phys., in press.
[11] Mehta, M.L, Random matrices, (1967), Academic Press New York/London · Zbl 0594.60067
[12] Weyl, H, The classical groups, (1946), Princeton Univ. Press Princeton, N.J · JFM 65.0058.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.