zbMATH — the first resource for mathematics

Maximal Frattini extensions. (English) Zbl 0453.20016

20D25 Special subgroups (Frattini, Fitting, etc.)
20E10 Quasivarieties and varieties of groups
20E18 Limits, profinite groups
20E22 Extensions, wreath products, and other compositions of groups
20E25 Local properties of groups
PDF BibTeX Cite
Full Text: DOI
[1] R. M. Bryant andL. G. Kovács, Lie representations and groups of prime power order. J. London Math. Soc. (2)17, 415-421 (1978). · Zbl 0384.20017
[2] W. Gaschütz, Über modulare Darstellungen endlicher Gruppen, die von freien Gruppen induziert werden. Math. Z.60, 274-286 (1954). · Zbl 0056.02401
[3] R. L. Griess andP. Schmid, The Frattini module. Arch. Math.30, 256-266 (1978). · Zbl 0362.20006
[4] K. W. Gruenberg, Projective profinite groups. J. London Math. Soc.42, 155-165 (1967). · Zbl 0178.02703
[5] P. Hall, The splitting properties of relatively free groups. Proc. London Math. Soc. (3)4, 343-356 (1954). · Zbl 0055.25201
[6] H.Neumann, Varieties of groups. Ergebnisse der Mathematik37, Berlin 1967. · Zbl 0149.26704
[7] P. M. Neumann, Splitting groups and projectives in varieties of groups. Quart. J. Math. Oxford (2)18, 325-332 (1967). · Zbl 0149.26801
[8] J.-P.Serre, Cohomologie Galoisienne (4iéme éd.), LNM5, Berlin 1973.
[9] G. E. Wall, A characterization of PSL2 \((\mathbb{Z}_{p^\lambda } )\) and PGL2 \((\mathbb{Z}_{p^\lambda } )\) . J. Austral. Math. Soc.8, 523-543 (1968). · Zbl 0164.02401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.