×

zbMATH — the first resource for mathematics

A characterization of the polydisc. (English) Zbl 0453.32008

MSC:
32F45 Invariant metrics and pseudodistances in several complex variables
32A07 Special domains in \({\mathbb C}^n\) (Reinhardt, Hartogs, circular, tube) (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Ahlfors, L.V.: Conformal invariants: topics in geometric function theory, New York: McGraw-Hill 1973 · Zbl 0272.30012
[2] Caratheodory, C.: Über das Schwarzsche Lemma bei analytischen Funktionen von zwei komplexen Veränderlichen. Math. Ann.97, 76–98 (1926) · JFM 52.0345.02 · doi:10.1007/BF01447861
[3] Kobayashi, S.: Hyperbolic manifolds and holomorphic mappings. New York: Marcel Dekker 1970 · Zbl 0207.37902
[4] Kobayashi, S., Intrinsic distances, measures, and geometric function theory. Bull. Am. Math. Soc.82, 357–416 (1976). · Zbl 0346.32031 · doi:10.1090/S0002-9904-1976-14018-9
[5] Reiffen, H.J.: Die Caratheodorysche Distanz und ihre zugehörige Differentialmetric. Math. Ann.161, 315–324 (1965) · Zbl 0141.08803 · doi:10.1007/BF01359970
[6] Royden, H.L.: Remarks on the Kobayashi metric. Lecture Notes in Mathematics, Vol. 185, pp. 125–137. Berlin, Heidelberg, New York: Springer 1971 · Zbl 0218.32012
[7] Stanton, Ch.M.: Embedding Riemann surfaces in polydiscs. Duke Math. J.43, 791–796 (1976) · Zbl 0353.32029 · doi:10.1215/S0012-7094-76-04360-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.