×

zbMATH — the first resource for mathematics

Completely integrable systems, Euclidean Lie algebras, and curves. (English) Zbl 0455.58017

MSC:
37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
37J99 Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems
53D50 Geometric quantization
70H05 Hamilton’s equations
70H99 Hamiltonian and Lagrangian mechanics
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
17B99 Lie algebras and Lie superalgebras
14H40 Jacobians, Prym varieties
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Arnold, V.I, Mathematical methods of classical mechanics, (1978), Springer-Verlag New York · Zbl 0386.70001
[2] Kazhdan, D; Kostant, B; Sternberg, S, Hamiltonian group actions and dynamical systems of Calogero type, (July 1978), CPAM
[3] van Moerbeke, P; Mumford, D, The spectrum of difference operators and algebraic curves, Acta math., (1979) · Zbl 0502.58032
[4] Dubrovin, B.A; Matveev, V.B; Novikov, S.P, Uspehi mat. nauk., Russian math. surveys, 31, No. 1, 55, (1976)
[5] Adler, M, On a trace functional for pseudo-differential operators and the symplectic structure of the Korteweg-devries equation, Invent. math., 50, No. 3, (1979) · Zbl 0393.35058
[6] van Moerbeke, P, The spectrum of Jacobi matrices, Invent. math., 37, (1976) · Zbl 0361.15010
[7] \scJ. Moser, Geometry of quadrics and spectral theory, preprint. · Zbl 0455.58018
[8] Kostant, B, The solution to a generalized Toda lattice and representation theory, Advances in math., 34, 195-338, (1979) · Zbl 0433.22008
[9] Mishchenko, A.S; Fomenko, A.T, Euler’s equations on finite-dimensional Lie groups, Izv. akad. nauk. SSSR ser. mat., 42, (1978) · Zbl 0383.58006
[10] Dikii, L.A, Hamiltional systems connected with the rotation group, Funksional. anal. i prilozen., 6, No. 4, 83-84, (1972)
[11] Manakov, S.V, Remarks on the integrals of the Euler equations of the n-dimensional heavy top, Functional anal. appl., 10, 4, (1976) · Zbl 0343.70003
[12] Moser, J, Various aspects of integrable Hamiltonian systems, (), in press · Zbl 0468.58011
[13] Golubev, V.V, Lectures on integration of the equations of motion of a rigid body about a fixed point, (1960), Published for the NSF by the Israel Program for Scientific Translations, Haifa, Israel · Zbl 0122.18701
[14] Chevalley, C, Theory of Lie groups, (1946), Princeton Univ. Press Princeton, N.J · Zbl 0063.00842
[15] \scE Artin, “Galois Theory,” Notre Dame Mathematical Lectures, No. 2.
[16] Symes, W, Systems of Toda type, inverse spectral problems, and representation theory, Invent. math., 59, No. 1, 13-53, (1980) · Zbl 0474.58009
[17] Moody, R, A new class of Lie algebras, J. algebra, 10, 211-230, (1968) · Zbl 0191.03005
[18] Gilmore, R, Lie groups, Lie algebras, and some of their applications, (1974), Wiley New York · Zbl 0279.22001
[19] Humphreys, J, Introduction to Lie algebras and representation theory, (1972), Springer-Verlag New York/Berlin · Zbl 0254.17004
[20] Flaschka, H, On the Toda lattice, I, Phys. rev. B, 9, (1974) · Zbl 0942.37504
[21] Bogoyavlensky, O.I, On perturbations of the periodic Toda lattices, Comm. math. phys., 51, (1976) · Zbl 0555.70003
[22] Coolidge, J, A treatise on algebraic plane curves, (), 321 · JFM 56.1167.02
[23] Adler, M; van Moerbeke, P, Linearization of Hamiltonian systems, Jacobi varieties, and representation theory, Advances in math., 38, 318-379, (1980) · Zbl 0455.58010
[24] \scS. Sternberg and A. Jacob, Co-adjoint structures, solitons and integrability, preprint.
[25] \scT. Ratiu, recent preprint.
[26] \scT. Ratiu and P. van Moerbeke, The Lagrange top and Kac-Moody Lie algebras, to appear. · Zbl 0466.58020
[27] \scD. R. Lebedev. and Yu. I., Manin, preprint ITEP-155 (1978).
[28] Wilson, G, Commuting flows and conservation laws for Lax equations, (), 131 · Zbl 0427.35024
[29] Helgason, S, Differential geometry, Lie groups and symmetric spaces, (), 491
[30] Knörrer, H, Geodesics on the ellipsoid, Invent. math., 59, No. 2, 119-144, (1980) · Zbl 0431.53003
[31] Frenkel, I; Reiman, A; Semenov-Tian-Shansky, M, Graded Lie algebras and completely integrable dynamical systems, Soviet math. dokl., 20, No. 4, 811-814, (1979) · Zbl 0437.58008
[32] Reiman, A; Semenov-Tian-Shansky, M, Reduction of Hamiltonian systems, affine Lie algebras and Lax equations, Invent. math., 54, No. 1, 81-101, (1979) · Zbl 0403.58004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.