×

zbMATH — the first resource for mathematics

Infinitely many critical points for functionals which are not even and applications to superlinear boundary value problems. (English) Zbl 0456.35031

MSC:
35J65 Nonlinear boundary value problems for linear elliptic equations
35J60 Nonlinear elliptic equations
35J20 Variational methods for second-order elliptic equations
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] ADAMS, R.A.: Sobolev spaces. Academic Press, N.Y., San Francisco, London; 1975 · Zbl 0314.46030
[2] AMANN, H.: Lusternik Schnirelman theory and nonlinear eigenvalue problems. Math. Ann., 199, 1972, 55-72 · Zbl 0233.47049 · doi:10.1007/BF01419576
[3] AMBROSETTI, A.: On the existence of multiple solutions for a class of nonlinear boundary value problems. Rend. Sem. Mat. Univ. Padova, 49, 1973, 195-204 · Zbl 0273.35037
[4] AMBROSETTI, A. ? RABINOWITZ, P.H.: Dual variational methods in critical point theory and applications. Journ. Funct. Anal., 14. 349-381 · Zbl 0273.49063
[5] BROWDER, F.E.: Existence theorems for nonlinear partial differential equations. Proc. Symp. Pure Math., 16, 1970, 1-60 · Zbl 0211.17204
[6] CLARK, D.C.: A variant of the Lusternik Schnirelman theory. Ind. Univ. Math. J., 22, 1972, 65-74 · Zbl 0228.58006 · doi:10.1512/iumj.1972.22.22008
[7] COFFMAN, C.V.: A minimax principle for a class of nonlinear integral equations. J. Analyse Math., 22, 1969, 391-419 · Zbl 0179.15601 · doi:10.1007/BF02786802
[8] COFFMAN, C.V.: On a class of nonlinear elliptic boundary value problems. J. Math. Mech. 1970, 351-356 · Zbl 0194.42103
[9] EDMUNDS, D.E. ? MOSCATELLI, V.B.: Sur la distribution asymptotique des valeurs propres pour une classe générale d’opérateurs différentiels. Compte Rendue Acad. Sc. Paris; A, 284, 1283-1285 · Zbl 0359.35061
[10] HEMPEL, J.A.: Superlinear variational boundary value problems and nonuniqueness. Thesis, Univ. of New England, Australia, 1970
[11] KLINGENBERG, W.: A course in differential geometry. Springer, Berlin, Heidelberg, N.Y., 1979
[12] KRASNOSELSKII, M.A.: Topological methods in the theory of nonlinear integral equations. Macmillan, N.Y., 1964
[13] LUSTERNIK, L. ? SCHNIRELMAN, L.: Methodes topologiques dans les problèmes variationels. Actualités Sc. Indust., 188, 1934
[14] NEHARI, Z.: Characteristic values associated with a class of nonlinear second order differential equations. Acta Math., 105, 1961, 141-175 · Zbl 0099.29104 · doi:10.1007/BF02559588
[15] PALAIS, R.S.: Critical point theory and the minimax principle. Proc. Symp. Pure Math., 15, 1970, 185-212 · Zbl 0212.28902
[16] PALAIS, R.S. ? SMALE, S.: A generalized Morse theory. Bull. AMS, 70, 1964, 165-171 · Zbl 0119.09201 · doi:10.1090/S0002-9904-1964-11062-4
[17] POHO?AEV, S.I.: Eigenfunctions of the equation ?u+?f (u)=O?. Doklady, 165. 1, 1965, 1408-1411
[18] RABINOWITZ, P.H.: Variational methods for nonlinear elliptic eigenvalue problems. Ind. Univ. Math. J., 23.2, 1974, 729-254 · Zbl 0278.35040 · doi:10.1512/iumj.1974.23.23061
[19] SCHWARTZ, J.T.: Generalizing the Lusternik Schnirelman theory of critical points. Comm. Pure Appl. Math., 17, 1964, 307-315 · Zbl 0152.40801 · doi:10.1002/cpa.3160170304
[20] STRUWE, M.: Multiple solutions of anticoercive boundary value problems for a class of ordinary differential equations of second order. To appear in J. Diff. Eq. · Zbl 0417.34039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.