×

zbMATH — the first resource for mathematics

Reducibility of generalized principal series representations. (English) Zbl 0457.22011

MSC:
22E46 Semisimple Lie groups and their representations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Borel, A. & Wallach, N. R.,Seminar on the cohomology of discrete subgroups of semsimple groups. Mimeographed notes, Institute for Advanced Study, 1976.
[2] Enright, T. J. & Wallach, N. R. The fundamental series of semisimple Lie algebras and semisimple Lie groups. Preprint. · Zbl 0383.22011
[3] Harish-Chandra, Harmonic analysis on real reductive groups I.J. Functional Analysis, 19 (1975), 104–204. · Zbl 0315.43002 · doi:10.1016/0022-1236(75)90034-8
[4] –, Harmonic analysis on real reductive groups III.Ann. of Math., 104 (1976), 117–201. · Zbl 0331.22007 · doi:10.2307/1971058
[5] –, Representations of semisimple Lie groups III.Trans. Amer. Math. Soc., 76 (1954). 234–253. · Zbl 0055.34002 · doi:10.1090/S0002-9947-1954-0062747-5
[6] Hecht H. &Schmid, W., A proof of Blattner’s conjecture.Invent. Math., 31 (1975), 129–154. · Zbl 0319.22012 · doi:10.1007/BF01404112
[7] Hirai, T., On irreducible representations of the Lorentz group ofn-th order.Proc. Japan Acad., 38 (1962), 83–87. · Zbl 0105.09703 · doi:10.3792/pja/1195523460
[8] Humphreys, J. E.,Introduction to Lie Algebras and Representation Theory. Springer-Verlag, New York, 1972. · Zbl 0254.17004
[9] Jantzen, J. C., Zur Charakterformel gewisser Darstellungen halbeinfacher Gruppen und Lie-Algebren.Math. Z., 140 (1974), 127–149. · Zbl 0288.20059 · doi:10.1007/BF01213951
[10] Kostant, B., On the existence and irreducibility of certain series of representations.Bull. Amer. Math. Soc., 75 (1969), 627–642. · Zbl 0229.22026 · doi:10.1090/S0002-9904-1969-12235-4
[11] Knapp, A. W. &Stein, E. M., Singular integrals and the principal series IV.Proc. Nat. Acad. Sci. U.S.A., 72 (1975), 2459–2461. · Zbl 0304.22012 · doi:10.1073/pnas.72.6.2459
[12] Knapp, A. W. &Zuckerman, G., Classification of irreducible tempered representations of semisimple Lie groups.Proc. Nat. Acad. Sci. U.S.A., 73, (1976), 2178–2180. · Zbl 0329.22013 · doi:10.1073/pnas.73.7.2178
[13] Langlands, R. P.,On the classification of irreducible representations of real algebraic groups. Mimeographed notes. Institute for Advanced Study, 1973.
[14] Lepowsky, J., Algebraic results on representations of semisimple Lie groups.Trans. Amer. Math. Soc., 176 (1973), 1–44. · Zbl 0264.22012 · doi:10.1090/S0002-9947-1973-0346093-X
[15] Schiffman, G., IntĂ©grales d’entrolacement et fonctions de Whittaker.Bull. Soc. Math. France, 99 (1971), 3–72.
[16] Schmid, W., On the characters of the discrete series (the Hermitian symmetric case).Invent. Math., 30 (1975), 47–144. · Zbl 0324.22007 · doi:10.1007/BF01389847
[17] –, Two character identities for semisimple Lie groups, inNon-commutative Harmonic Analysis. Lecture Notes in Mathematics 587, Springer-Verlag, Berlin, 1977.
[18] Speh, B.,Some results on pricipal series for GL(n,R). Ph.D. Dissertation, Massachusetts Institute of Technology, June, 1977.
[19] Vogan, D., The algebraic structure of the representations of semisimples Lie groups.Ann. of Math., 109 (1979), 1–60. · Zbl 0424.22010 · doi:10.2307/1971266
[20] Warner, G.,Harmonic Analysis of Semisimple Lie Groups 1. Springer-Verlag, New York, 1972. · Zbl 0265.22020
[21] Zuckerman, G., Tensor products of finite and infinite dimensional representations of semisimple Lie groups.Ann. of Math. 106 (1977), 295–308. · Zbl 0384.22004 · doi:10.2307/1971097
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.