×

zbMATH — the first resource for mathematics

Neighborhoods of univalent functions. (English) Zbl 0458.30008

MSC:
30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. Clunie and F. R. Keogh, On starlike and convex schlicht functions, J. London Math. Soc. 35 (1960), 229 – 233. · Zbl 0092.07303 · doi:10.1112/jlms/s1-35.2.229 · doi.org
[2] A. W. Goodman, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc. 8 (1957), 598 – 601. · Zbl 0166.33002
[3] I. S. Jack, Functions starlike and convex of order \?, J. London Math. Soc. (2) 3 (1971), 469 – 474. · Zbl 0224.30026 · doi:10.1112/jlms/s2-3.3.469 · doi.org
[4] Gaston Julia, Extension nouvelle d’un lemme de Schwarz, Acta Math. 42 (1920), no. 1, 349 – 355 (French). · JFM 47.0272.01 · doi:10.1007/BF02404416 · doi.org
[5] Christian Pommerenke, Univalent functions, Vandenhoeck & Ruprecht, Göttingen, 1975. With a chapter on quadratic differentials by Gerd Jensen; Studia Mathematica/Mathematische Lehrbücher, Band XXV. · Zbl 0298.30014
[6] St. Ruscheweyh and T. Sheil-Small, Hadamard products of Schlicht functions and the Pólya-Schoenberg conjecture, Comment. Math. Helv. 48 (1973), 119 – 135. · Zbl 0261.30015 · doi:10.1007/BF02566116 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.