Bedford, Eric; De Bartolomeis, Paolo Levi flat hypersurfaces which are not holomorphically flat. (English) Zbl 0459.32007 Proc. Am. Math. Soc. 81, 575-578 (1981). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 8 Documents MSC: 32V40 Real submanifolds in complex manifolds 32T99 Pseudoconvex domains 57R30 Foliations in differential topology; geometric theory Keywords:real analytic smooth hypersurface; extension of holomorphic foliation PDF BibTeX XML Cite \textit{E. Bedford} and \textit{P. De Bartolomeis}, Proc. Am. Math. Soc. 81, 575--578 (1981; Zbl 0459.32007) Full Text: DOI References: [1] S. S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219 – 271. · Zbl 0302.32015 · doi:10.1007/BF02392146 · doi.org [2] James J. Faran V, Non-analytic hypersurfaces in \?\(^{n}\), Math. Ann. 226 (1977), no. 2, 121 – 123. · Zbl 0329.32005 · doi:10.1007/BF01360863 · doi.org [3] Charles Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), 1 – 65. · Zbl 0289.32012 · doi:10.1007/BF01406845 · doi.org [4] G. M. Henkin, An analytic polyhedron is not holomorphically equivalent to a strictly pseudoconvex domain, Dokl. Akad. Nauk SSSR 210 (1973), 1026 – 1029 (Russian). · Zbl 0288.32015 [5] S. I. Pinčuk, Biholomorphic inequivalence of bounded domains with smooth and piecewise-smooth boundaries, Dokl. Akad. Nauk SSSR 247 (1979), no. 3, 554 – 557 (Russian). [6] C. Rea, Levi-flat submanifolds and holomorphic extension of foliations, Ann. Scuola Norm. Sup. Pisa (3) 26 (1972), 665 – 681. · Zbl 0272.57013 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.