zbMATH — the first resource for mathematics

Continuous cohomology and \(p\)-adic Galois representations. (English) Zbl 0463.12005

11S25 Galois cohomology
20G10 Cohomology theory for linear algebraic groups
14F30 \(p\)-adic cohomology, crystalline cohomology
22E50 Representations of Lie and linear algebraic groups over local fields
20G25 Linear algebraic groups over local fields and their integers
Full Text: DOI EuDML
[1] Fontaine, J-M.: Modules Galoisiens, modules filtrés, et anneaux de Barsotti-Tate, Soc. Math. de France, Astérisque65, 3-80 (1979) · Zbl 0429.14016
[2] Lazard, M.: Groupes Analytiquesp-adiques, Publ. Math. no. 26, 1965 · Zbl 0139.02302
[3] Sen, S.: On automorphisms of local fields, Ann. of Math.90, 33-46 (1969) · Zbl 0199.36301 · doi:10.2307/1970680
[4] Sen, S.: Lie algebras of Galois groups arising from Hodge-Tate modules, Ann. of Math.97, 160-170 (1973) · Zbl 0258.12009 · doi:10.2307/1970879
[5] Sen, S.: On explicit reciprocity laws, J. Reine Angew. Math.313, 1-26 (1980) · Zbl 0411.12005 · doi:10.1515/crll.1980.313.1
[6] Serre, J-P.: Corps Locaux, Paris: Hermann 1962 · Zbl 0137.02601
[7] Serre, J-P.: Résumé des cours de 1965-1966, Annuaire du Collège de France 49-58 (1966-1967)
[8] Serre, J-P.: Sur les groupes de Galois attachés aux groupesp-divisibles, Proc. Conf. Local Fields (T.A. Springer ed.), pp. 118-131, Heidelberg: Springer-Verlag 1967
[9] Serre, J-P.: Abelianl-adic representations and elliptic curves, New York: Benjamin 1968
[10] Serre, J-P.: Groupes algébriques associés aux modules de Hodge-Tate, Soc. Math. de France, Astérisque65, 155-188 (1979)
[11] Tate, J.:p-divisible groups, Proc. Conf. Local Fields (T.A. Springer ed.), pp. 158-183, Heidelberg: Springer-Verlag 1967
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.