zbMATH — the first resource for mathematics

Early coefficients of the inverse of a regular convex function. (English) Zbl 0464.30019

30C50 Coefficient problems for univalent and multivalent functions of one complex variable
30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
Full Text: DOI
[1] Peter L. Duren, Coefficients of univalent functions, Bull. Amer. Math. Soc. 83 (1977), no. 5, 891 – 911. · Zbl 0372.30012
[2] Ulf Grenander and Gabor Szegö, Toeplitz forms and their applications, California Monographs in Mathematical Sciences, University of California Press, Berkeley-Los Angeles, 1958. · Zbl 0080.09501
[3] W. E. Kirwan and G. Schober, Inverse coefficients for functions of bounded boundary rotation, J. Analyse Math. 36 (1979), 167 – 178 (1980). · Zbl 0441.30019
[4] Jan G. Krzyż, Richard J. Libera, and Eligiusz Złotkiewicz, Coefficients of inverses of regular starlike functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 33 (1979), 103 – 110 (1981) (English, with Russian and Polish summaries). · Zbl 0472.30017
[5] Albert E. Livingston, The coefficients of multivalent close-to-convex functions, Proc. Amer. Math. Soc. 21 (1969), 545 – 552. · Zbl 0186.39901
[6] Christian Pommerenke, Univalent functions, Vandenhoeck & Ruprecht, Göttingen, 1975. With a chapter on quadratic differentials by Gerd Jensen; Studia Mathematica/Mathematische Lehrbücher, Band XXV. · Zbl 0298.30014
[7] D. V. Prokhorov and J. Szynal, Inverse coefficients for \( (\alpha ,\beta )\)-convex functions (preprint). · Zbl 0557.30014
[8] Glenn Schober, Coefficient estimates for inverses of schlicht functions, Aspects of contemporary complex analysis (Proc. NATO Adv. Study Inst., Univ. Durham, Durham, 1979) Academic Press, London-New York, 1980, pp. 503 – 513.
[9] Steve Smale, The fundamental theorem of algebra and complexity theory, Bull. Amer. Math. Soc. (N.S.) 4 (1981), no. 1, 1 – 36. · Zbl 0456.12012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.