×

zbMATH — the first resource for mathematics

The initial value problem for the Navier-Stokes equations with a free surface. (English) Zbl 0464.76028

MSC:
76D05 Navier-Stokes equations for incompressible viscous fluids
35A05 General existence and uniqueness theorems (PDE) (MSC2000)
35Q30 Navier-Stokes equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Agmon, Comm. Pure Appl. Math. 17 pp 35– (1964)
[2] Nonlinearity and Functional Analysis, Academic Press, New York, 1977.
[3] Bourguignon, J. Functional Anal. 15 pp 341– (1974)
[4] Existence theorems in elasticity, Handbuch der Physik VI a/2, pp. 347–390, Springer-Verlag, Berlin, 1972.
[5] Partial Differential Equations, Holt, Rinehart and Winston, New York, 1969.
[6] Fujita, Arch. Rat. Mech. Anal. 16 pp 269– (1964)
[7] Heywood, Indiana Univ. J. 29 pp 639– (1980)
[8] Kano, J. Math. Kyoto University 19 pp 335– (1979)
[9] The Mathematical Theory of Viscous Incompressible Flow, Second Ed., Gordon & Breach, New York, 1969. · Zbl 0184.52603
[10] and , Nonhomogeneous Boundary Value Problems and Applications, Springer-Verlag, Berlin, 1972.
[11] Peetre, Trans. Amer. Math. Soc. 104 pp 476– (1962)
[12] Solonnikov, Proc. Steklov Inst. Math. 125 pp 186– (1973)
[13] Soionnikov, J. Soviet Math. 10 pp 141– (1978)
[14] Solonnikov, J. Soviet Math. 10 pp 336– (1978)
[15] Solonnikov, Math. U.S.S.R. Izvestiya 11 pp 1323– (1977)
[16] Navier-Stokes Equations, North-Holland, Amsterdam, 1977.
[17] Temam, J. Functional Anal. 20 pp 32– (1975)
[18] and , Surface waves, Handbuch der Physik IX, pp. 446–778, Springer-Verlag, Berlin, 1960.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.