×

zbMATH — the first resource for mathematics

Elastic-plastic analysis of plates by the hybrid-stress model and initial-stress approach. (English) Zbl 0466.73095

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74K20 Plates
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] The Finite Element Method, McGraw-Hill, Berkshire, England, 1977.
[2] and , Introduction to the Finite Element Method, 1st edn, Van Nostrand-Reinhold, New York, 1972.
[3] Yamanda, Int. J. num. Meth Engng 5 pp 193– (1972)
[4] ’Assumed stress hybrid finite-element method for fracture mechanics and elastic-plastic analysis’, MIT ASRL TR 170-1 (1972).
[5] ’A study of elastic-plastic analysis by the assumed-stress hybrid finite-element model, with application to thick shells revolution’, MIT ASRL TR 175-1 (1974).
[6] and , ’Elastic-plastic and creep analysis by assumed stress finite elements’, Trans. 3rd Int. Conf. on Structural Mechanics in Reactor Technology, London (1975).
[7] Spilker, Int. J. num. Meth. Engng 14 pp 359– (1979)
[8] and , ’Hybrid stress finite element model for elastic-plastic analysis’, in Finite Elements in Nonlinear Mechanics, Vol. 1, Tapir Publishers, Norway, 1978, pp. 109-130.
[9] and , ’Elastic-plastic analysis using hybrid stress finite elements’, in Finite Elements in Nonlinear Mechanics, Vol. 1, Tapir Publishers, Norway, 1978, pp. 131-148.
[10] Pian, J. Franklin Inst. 302 pp 473– (1976)
[11] Zienkiewicz, Int. J. num. Meth. Engng 1 pp 75– (1969)
[12] and , ’Finite element methods in continuum mechanics’, in Advances in Applied Mechanics, Vol. 12, Academic Press, New York, 1972, pp. 1-58.
[13] ’Hybrid elements’ in Numerical and Computer Methods in Structural Mechanics (Eds. , and ). Academic Press, New York, 1973, pp. 59-78. · doi:10.1016/B978-0-12-253250-4.50009-9
[14] Spilker, Int. J. num, Meth, Engng 15 pp 1239– (1980)
[15] Spilker, Comp. Struct. 12 pp 11– (1980)
[16] Spilker, Int. J. num. Meth Engng 15 pp 1261– (1980)
[17] ’Application of the theory of perfectly plastic solids to stress analysis of strain hardening solid’, Brown University Grad. Division of Applied Math., TR 51 (1950).
[18] ’A theory of plastic flow for anisotropic hardening in plastic deformation of an initially isotropic material’, Rept. S410, Natl. Aeronautical Research Inst., Amsterdam, The Netherlands (1953).
[19] , and , ’A comparison of current work hardening models used in the analysis of plastic deformations’, Aerospace Engng. Dept., Texas A. & M. Univ. (1973).
[20] Plasticity Theory and Application, MacMillan, New York, 1968.
[21] Hinton, Int. J. num. Meth. Engng 9 pp 235– (1975)
[22] Barlow, Int. J. num. Meth Engng 10 pp 243– (1976)
[23] Hodge, Trans. Am. Soc. Mech. Engng, J. Appl. Mech. 35 pp 796– (1968) · Zbl 0172.52003 · doi:10.1115/1.3601308
[24] Pipes, J. Comp. Materials 4 pp 538– (1970)
[25] Pagano, J. Comp. Materials 8 pp 65– (1974)
[26] Spilker, Int. J. num. Meth. Engng
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.