×

zbMATH — the first resource for mathematics

Approximation of functions by Vallee-Poussin sums. (English) Zbl 0471.41013
MSC:
41A30 Approximation by other special function classes
41A25 Rate of convergence, degree of approximation
42A16 Fourier coefficients, Fourier series of functions with special properties, special Fourier series
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. B. Stechklin, ?On approximation of periodic functions by Fejér sums,? Tr. Steklov Mat. Inst. Akad. Nauk SSSR62, 48-60 (1961).
[2] K. I. Oskolkov, ?On the Lebesgue inequality in the uniform metric and on a set of full measure,? Mat. Zametki,18, No. 4, 515-526 (1975). · Zbl 0339.42001
[3] K. I. Oskolkov, ?On the Lebesgue inequality in the mean,? Mat. Zametki,25, No. 4, 551-555 (1979). · Zbl 0414.42002
[4] S. B. Stechkin (Steckin), ?On the approximation of periodic functions by dela Vallee-Poussin sums,? Anal. Math.,4, 61-74 (1978). · Zbl 0393.41009 · doi:10.1007/BF01904859
[5] V. Damen, ?On best approximation and Vallée-Poussin sums,? Mat. Zametki,23, No. 5, 671-683 (1978). · Zbl 0385.42001
[6] N. K. Bari, ?On best approximation of two conjugate functions by trigonometric polynomials,? Izv. Akad. Nauk SSSR, Ser. Mat.,19, 285-302 (1955).
[7] S. B. Stechkin, ?On best approximation of conjugate functions by trigonometric polynomials,? Izv. Akad. Nauk SSSR, Ser. Mat.,20, 197-206 (1956).
[8] Sun Yung Sheng, ?On best approximation of periodic differentiable functions by trigonometric polynomials,? Izv. Akad. Nauk SSSR, Ser. Mat.,23, 67-92 (1969). · Zbl 0085.28101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.