Some critical point theorems and applications. (English) Zbl 0472.58009


58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces
Full Text: DOI


[1] Ambrosetti, J. Funct. Anal. 14 pp 349– (1973)
[2] Berger, Adv. Math. 25 pp 97– (1977)
[3] Brezis, Ann. Scuol. Norm. Sup. Pisa 5 pp 225– (1978)
[4] Clark, Indiana Univ. Math. J. 22 pp 65– (1972)
[5] Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1966.
[6] Topological Methods in the Theory of Nonlinear Integral Equations, Macmillan, New York, 1964.
[7] Variational methods for nonlinear eigenvalue problems, in: Eigenvalues of Nonlinear Problems, C.I.M.E. (Varenna, Italy),
[8] Eigenvalues of Nonlinear Problems, editor, Edizioni Cremonese, Roma, 1974, pp. 141–195.
[9] Rabinowitz, Comm. Pure Appl. Math. 31 pp 157– (1978)
[10] Rabinowitz, Ann. Scuol. Norm Sup. Pisa, Ser. IV 2 pp 215– (1978)
[11] Jacobowitz, J. Diff. Eq. 20 pp 37– (1976)
[12] Amer. J. Math. In Press.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.