×

Kazhdan-Lusztig conjecture and holonomic systems. (English) Zbl 0473.22009


MSC:

22E47 Representations of Lie and real algebraic groups: algebraic methods (Verma modules, etc.)
14F40 de Rham cohomology and algebraic geometry
14L30 Group actions on varieties or schemes (quotients)
35A99 General topics in partial differential equations
55N35 Other homology theories in algebraic topology
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Bernstein-Gelfand-Gelfand: Differential operators on the base affine space and a study ofG-module, In: Lie groups and their representations, Budapest 1971. Ed. par I.M. Gelfand, Wiley, New York, pp. 39-64, 1975
[2] Deligne, P.: Letter to D. Kazhdan and G. Lusztig, Bures-sur-Yvette, April 20, 1979
[3] Demazure, M.: Desingularisation des variétés de Schubert généralisées. Ann. Sci. École Norm. Sup.7, 53-88 (1974) · Zbl 0312.14009
[4] Kashiwara, M.: Systèmes d’équations micro-différentielles. Cours rédigé par Teresa Monteiro-Fernandes, Prépublications mathématiques de l’Université de Paris-Nord (1977)
[5] Kashiwara, M.: Faisceaux constructibles et systèmes holonomes d’équations aux dérivées partielles linéaires à points singuliers réguliers, Exposé au Séminaire Goulaouic-Schwartz 1979-80, Ecole Polytechnique, Palaiseau · Zbl 0444.58014
[6] Kashiwara, M., Kawai, T.: On the holonomic systems of linear differential equations I, II, III. To appear · Zbl 0449.35095
[7] Kazhdan, D., Lusztig, G.: Representations of Coxeter groups and Hecke algebras. Inventiones math.53, 165-184 (1979) · Zbl 0499.20035
[8] Kazhdan, D., Lusztig, G.: Schubert varieties and Poincaré duality. Proc. Symp. Pure Math.36, 185-203 (1980) · Zbl 0461.14015
[9] Kempf, G.: The geometry of homogeneous spaces versus induced representations · Zbl 0439.14011
[10] Kempf, G.: The Grothendieck-Cousin complex of an induced representation. Advances in Math.29, 310-396 (1978) · Zbl 0393.20027
[11] Poincaré, H.: Thèse, Oeuvres I, Paris, 1928 · JFM 54.0692.01
[12] Verdier, J.L.: Exposé VI au séminaire de Géométrie Analytique de l’E.N.S., 1974-75, Astérisque No. 36-37
[13] Verma, D.N.: Structure of certain induced representations of complex semi-simple Lie algebras. Bull. A.M.S.74, 160-166 (1968) · Zbl 0157.07604
[14] Sullivan, D.: Combinatorial invariants of analytic spaces in Proceedings of the Liverpool Singularities Symposium I. Springer Lecture Notes192, 165-168 (1971)
[15] Mebkhout, Z.: Thèse de doctorat d’Etat. Université de Paris VII (1979)
[16] Mebkhout, Z.: Sur le problème de Riemann-Hilbert. Note C.R.A.S., t. 290 (3 Mars 1980)
[17] Mebkhout, Z.: Dualité de Poincaré. In: Séminaire sur les singularités. Publications mathématiques de l’Université Paris VII No 7 (1980)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.