Algebraic independence of certain gap series. (English) Zbl 0474.10029


11J85 Algebraic independence; Gel’fond’s method
Full Text: DOI


[1] P. Bundschuh undF.-J. Wylegala, Über algebraische Unabhängigkeit bei gewissen nichtfortsetzbaren Potenzreihen. Arch. Math.34, 32-36 (1980). · Zbl 0414.10033
[2] P. L. Cijsouw andR. Tijdeman, On the transcendence of certain power series of algebraic numbers. Acta Arith.23, 301-305 (1973).
[3] A. Durand, Indépendance algébrique de nombres complexes et critère de transcendence. Comp. Math.35, 259-267 (1977). · Zbl 0372.10022
[4] Y. Z. Flicker, Algebraic independence by a method of Mahler. J. Austral. Math. Soc. (A)27. 173-188 (1979). · Zbl 0399.10035
[5] H. Kneser, Eine kontinuumsmächtige, algebraisch unabhängige Menge reeller Zahlen. Bull. Soc. Math. Belg.12, 23-27 (1960). · Zbl 0100.04002
[6] J. von Neumann, Ein System algebraisch unabhängiger Zahlen. Math. Ann.99, 134-141 (1928). · JFM 54.0096.02
[7] 0. Perron, Über mehrfach transzendente Erweiterungen des natürlichen Rationalitätsbereichs. S.-B. Bayer Akad. Wiss. H.2, 79-86 (1932). · JFM 58.0208.01
[8] W. M. Schmidt, Simultaneous approximation and algebraic independence of numbers. Bull. Amer. Math. Soc.68, 475-478 (1962). · Zbl 0109.03501
[9] M.Waldschmidt, Nombres transcendents. LNM 402, Berlin-Heidelberg-New York 1974. · Zbl 0302.10030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.