×

Local cohomology of certain Rees- and form-rings. I. (English) Zbl 0475.14001


MSC:

14B15 Local cohomology and algebraic geometry
14M05 Varieties defined by ring conditions (factorial, Cohen-Macaulay, seminormal)
13H10 Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Brodmann, M.: Finiteness of ideal transforms. J. algebra 63, 162-185 (1980) · Zbl 0396.13018
[2] Brodmann, M.: Kohomologische eigenschaften von aufblasungen an lokal vollständigen durchschnitten. (1980)
[3] Faltings, G.: Ueber macaulayfizierung. Math. ann. 238, 175-192 (1978) · Zbl 0398.14002
[4] Goto, S.: On the macaulayfication of certain Buchsbaum rings. (1979) · Zbl 0413.13012
[5] Grothendieck, A.: EGA IV I.H.E.S. Publ. math.. 24 (1965)
[6] Grothendieck, A.: Sga ii. (1968)
[7] Grothendieck, A.: Local cohomology. Lecture notes in mathematics no. 41 (1967) · Zbl 0185.49202
[8] Hartshorne, R.: Residues and duality. Lecture notes in mathematics no. 20 (1960)
[9] Hartshorne, R.: Algebraic geometry. (1977) · Zbl 0367.14001
[10] Matsumura, H.: Commutative algebra. (1970) · Zbl 0211.06501
[11] Nagata, M.: Local rings. (1962) · Zbl 0123.03402
[12] Chuong, Nguen Tu; Trung, Ngo Viet; Schenzel, P.: Verallgemeinerte Cohen-Macaulay-modulu. Math. nachr. 85, 57-73 (1978) · Zbl 0398.13014
[13] Rees, D.: The grade of an ideal and module. Proc. Cambridge phil. Soc. 53, 28-42 (1957) · Zbl 0079.26602
[14] Stückrad, J.: Zur theorie der Buchsbaum-moduln. (1979) · Zbl 0474.13010
[15] Stückrad, J.; Schenzel, P.; Vogel, W.: Theorie der Buchsbaum-moduln. Preprint 23/24 (1979)
[16] Valla, G.: Certain graded algebras are always Cohen-Macaulay. J. algebra 42, 537-548 (1976) · Zbl 0338.13013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.