×

Ball-homogeneous and disk-homogeneous Riemannian manifolds. (English) Zbl 0476.53023


MSC:

53C20 Global Riemannian geometry, including pinching
53C30 Differential geometry of homogeneous manifolds
53C35 Differential geometry of symmetric spaces
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Besse, A.L.: Manifolds all of whose geodesics are closed. Ergebnisse der Mathematik93, Berlin-Heidelberg-New York: Springer 1978 · Zbl 0387.53010
[2] Chen, B.Y., Vanhecke, L.: Differential geometry of geodesic spheres. J. Reine Angew. Math.325, 28-67 (1981) · Zbl 0503.53013
[3] Gray, A., Vanhecke, L.: Riemannian geometry as determined by the volumes of small geodesic balls. Acta Math.142, 157-198 (1979) · Zbl 0428.53017
[4] Helgason, S.: Differential geometry and symmetric spaces. New York: Academic Press 1962 · Zbl 0111.18101
[5] Kobayashi, S., Nomizu, K.: Foundations of differential geometry. Vol. II. New York-London: Interscience 1969 · Zbl 0175.48504
[6] Lichnerowicz, A.: G?om?trie des groupes de transformation. Paris: Dunod 1958
[7] Ruse, H.S., Walker, A.G., Willmore, T.J.: Harmonic spaces. Roma: Cremonese 1961 · Zbl 0134.39202
[8] Singer, I.M., Thorpe, J.A.: The curvature of 4-dimensional Einstein spaces. In: Global Analysis (Papers in honor of K. Kodaira), pp. 355-366. Princeton, New Jersey: Princeton University Press 1969 · Zbl 0199.25401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.