×

zbMATH — the first resource for mathematics

Structure of mappings of an interval with zero entropy. (English) Zbl 0477.58030

MSC:
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] P. Collet, J.-P. Eckmann, O. E. Landford III,Universal properties of maps of an interval, preprint. · Zbl 0455.58024
[2] M. Feigenbaum,Quantitative universality for a class of nonlinear transformation, preprint, Los Alamos. · Zbl 0509.58037
[3] L. Jonker,Periodic orbits and kneading invariants, preprint, Warwick, June 1977. · Zbl 0425.58014
[4] N. Metropolis, M. L. Stein, P. R. Stein, On finite limit sets for transformations on the unit interval,Journal of Combinatorial Theory (A),15 (1973), 25–44. · Zbl 0259.26003 · doi:10.1016/0097-3165(73)90033-2
[5] J. Milnor,The theory of kneading, preprint.
[6] M. Misiurewicz, Horsehoes for mappings of the interval,Bull. Acad. Pol. Sci., Sér. sci. math.,27 (1979), 167–169. · Zbl 0459.54031
[7] M. Misiurewicz, Invariant measures for continuous transformations of [0, 1] with zero topological entropy, Ergodic Theory, Proceedings, Oberwolfach, Germany, 1978,Lecture Notes in Math.,729, 144–152. · doi:10.1007/BFb0063290
[8] M. Misiurewicz, W. Szlenk, Entropy of piecewise monotone mappings,Astérisque,50 (1977), 299–310 (full version will appear inStudia Math.,67). · Zbl 0376.54019
[9] D. Singer, Stable orbits and bifurcation of maps of the interval,SIAM J. Appl. Math.,35 (1978), 260–267. · Zbl 0391.58014 · doi:10.1137/0135020
[10] A. N. Šarkovskiî, Coexistence of cycles of a continuous map of a line into itself,Ukr. Mat. Žurnal,16 (1964), 1, 61–71 (in Russian).
[11] P. Štefan, A theorem of Šarkovskiî on the existence of periodic orbits of continuous endomorphism of the real line,Commun. Math. Phys.,54 (1977), 237–248. · Zbl 0354.54027 · doi:10.1007/BF01614086
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.