×

zbMATH — the first resource for mathematics

Matroids and multicommodity flows. (English) Zbl 0479.05023

MSC:
05B35 Combinatorial aspects of matroids and geometric lattices
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Basterfield, J.G.; Kelly, L.M., A characterisation of sets of n points which determine n hyperplanes, Proc. Cambridge philos. soc., 64, 585-588, (1968) · Zbl 0183.49602
[2] Bixby, R.E., l-matrices and a characterization of binary matroids, Discrete math., 8, 139-145, (1974) · Zbl 0279.05027
[3] Dirac, G.A., A property of 4-chromatic graphs and some remarks on critical graphs, J. London math. soc., 27, 85-92, (1952) · Zbl 0046.41001
[4] Edmonds, J., Maximum matching and a polyhedron with 0,1-vertices, J. res. nat. bur. standards sect. B, 69, 125-130, (1965) · Zbl 0141.21802
[5] Edmonds, J.; Johnson, E.L., Matching, Euler tours and the Chinese postman, Math. programming, 5, 88-124, (1973) · Zbl 0281.90073
[6] Ford, L.R.; Fulkerson, D.R., Flows in networks, (1962), Princeton University Press Princeton · Zbl 0139.13701
[7] Fulkerson, D.R., Networks, frames and blocking systems, (), 303-335 · Zbl 0182.53402
[8] Fulkerson, D.R., Blocking polyhedra, (), 93-112 · Zbl 0217.18505
[9] Gallai, T., Über regülare kettengruppen, Acta math. acad. sci. hungar., 10, 227-240, (1959) · Zbl 0119.38902
[10] Hoffman, A.J., Some recent applications of the theory of linear inequalities to extremal combinatorial analysis, In proc. symposia on appl. math., 10, 113-127, (1960)
[11] Hu, T.C., Multicommodity network flows, Oper. res., 11, 344-360, (1963) · Zbl 0123.23704
[12] Lehman, A., On the width-length inequality, Math. programming, 16, 245-259, (1979) · Zbl 0396.94024
[13] Minty, G.J., On the axiomatic foundations of the theories of directed linear groups, electrical networks and network programming, J. math. mech., 15, 485-520, (1966) · Zbl 0141.21601
[14] Rothschild, B.; Whinston, A., On two commodity network flows, Oper. res., 14, 377-387, (1966) · Zbl 0141.35904
[15] Seymour, P.D., A note on the production of matroid minors, J. combin. theory ser. B, 22, 289-295, (1977) · Zbl 0385.05021
[16] Seymour, P.D., The matroids with the MAX-flow MIN-cut property, J. combin. theory ser. B, 23, 189-222, (1977) · Zbl 0375.05022
[17] Seymour, P.D., A two-commodity cut theorem, Discrete math., 23, 177-181, (1978) · Zbl 0387.05022
[18] Seymour, P.D., Sums of circuits, () · Zbl 0465.05042
[19] Seymour, P.D., On multicolourings of cubic graphs and conjectures of fulkerson and Tutte, Proc. London math. soc. (3), 38, 423-460, (1979) · Zbl 0411.05037
[20] Seymour, P.D., Decomposition of regular matroids, J. combin. theory ser. B, 28, 305-359, (1980) · Zbl 0443.05027
[21] Seymour, P.D., On odd cuts and plane multicommodity flows, Proc. London math. soc. (3), 42, 178-192, (1981) · Zbl 0447.90026
[22] Tutte, W.T., A homotopy theorem for matroids, II, Trans. amer. math. soc., 88, 161-174, (1958) · Zbl 0081.17301
[23] Tutte, W.T., Matroids and graphs, Trans. amer. math. soc., 90, 527-552, (1959) · Zbl 0084.39504
[24] Wagner, K., Uber eine eigenschaft der evenen komplexe, Math. ann., 114, 570-590, (1937) · JFM 63.0550.01
[25] Welsh, D.J.A., Matroid theory, (1976), Academic Press London · Zbl 0343.05002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.