Nedelec, J. C. Integral equations with non integrable kernels. (English) Zbl 0479.65060 Integral Equations Oper. Theory 5, 562-572 (1982). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 70 Documents MSC: 65N35 Spectral, collocation and related methods for boundary value problems involving PDEs 65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs 35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation 35C15 Integral representations of solutions to PDEs Keywords:Laplace equation; Helmholtz equation; system of elasticity equations; non integrable kernels; finite element; Neumann’s problem; double layer PDF BibTeX XML Cite \textit{J. C. Nedelec}, Integral Equations Oper. Theory 5, 562--572 (1982; Zbl 0479.65060) Full Text: DOI OpenURL References: [1] BONNEMAY, P.,Equations intégrales pour l’élasticité plane, Thèse de 3ème cycle, Université de Paris VI, 1979. [2] HAMDI, M.A., Une formulation variationnelle par équations pour la résolution de l’équation de Helmholtz avec des conditions aux limites mixtes, Note au C.R.A.S., Paris, Série II, T. 292 (1981). · Zbl 0479.76088 [3] HA DUONG, T.,A finite element method for the double-layer potential solutions of the Neumann’s problem, Math. Meth. in the Appl. Sci.,2 (1980), 191–208. · Zbl 0437.65083 [4] LIONS, J.L., MAGENES, E.,Problèmes aux limites non homogènes et Applications, T.1, Dunod, Paris, 1968. · Zbl 0165.10801 [5] NEDELEC, J.C.,Résolution par potentiel de double couche du problème de Neumann extérieur, Note au C.R.A.S., Paris, Série A, T. 286 (1978), 103–106. · Zbl 0375.65047 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.