zbMATH — the first resource for mathematics

The moving finite element method: Applications to general partial differential equations with multiple large gradients. (English) Zbl 0482.65061

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65Y99 Computer aspects of numerical algorithms
35L60 First-order nonlinear hyperbolic equations
35Q99 Partial differential equations of mathematical physics and other areas of application
76L05 Shock waves and blast waves in fluid mechanics
Full Text: DOI
[1] {\scK. Miller and R. Miller}, SIAM J. Numer. Anal., in press.
[2] {\scK. Miller}, SIAM J. Numer. Anal., in press.
[3] Gear, C.W., Comm. assoc. comput. Mach., 14, 176-179, (1971)
[4] Gelinas, R.J., J. comput. phys., 9, No. 2, 222, (1972)
[5] Hindmarsh, A.C.; Byrne, G.D., EPISODE: an effective package for the integration of systems of ordinary differential equations, Lawrence livermore laboratory report UCID-30112, (April 1977), Rev. 1, Computer Documentation
[6] McCormack, R.; Paullay, A.J., Computers and fluids, 2, 339-361, (1974)
[7] Oran, E.S.; Young, T.; Boris, J., (), 43
[8] Oran, E.S.; Boris, J.P.; Young, T.; Flanigan, M.; Burks, T.; Picone, M., Detonations in hydrogen-air and methane-air mixtures, Naval research laboratory preprint, (1979)
[9] Dwyer, H.A.; Kee, R.J.; Sanders, B.R., ()
[10] Oliger, J., (), and subsequent private communications
[11] Oden, J.T., Finite elements of nonlinear continua, (1972), McGraw-Hill New York · Zbl 0235.73038
[12] Strang, G.; Fix, G.J., An analysis of the finite element method, (1973), Prentice-Hall Englewood Cliffs, N.J · Zbl 0278.65116
[13] Doss, S.K.; Miller, K., Moving finite element solution of the vorticity equations, (1974), [See also References 1 and 2 for a brief summary of these results.]
[14] {\scM. J. Djomehri}, “Moving Finite Element Solution of Systems of Partial Differential Equations in 1-Dimension,” Ph.D. Thesis, University of California, Berkeley. · Zbl 0666.76120
[15] Boris, J.P.; Book, D.L.; Boris; Boris, J. comput. phys., J. comput. phys., J. comput. phys., 20, 397, (1976), See also
[16] Byrne, G.C., ()
[17] Concus, P.; Proskurowski, W., Numerical solution of a nonlinear hyperbolic equation by the random choice method, Lawrence Berkeley laboratory report LBL-6487, (December 1977), Rev.
[18] Dwyer, H.A.; Sanders, B.R., Numerical modeling of unsteady flame propagation, Sandia livermore laboratories report SAND 77-8275, (February 1978)
[19] Otey, G.R.; Dwyer, H.A., A numerical study of the interaction of fast chemistry and diffusion, Sandia livermore laboratories report SAND 78-8686, (April 1979)
[20] {\scR. Alexander, P. Manselli, and K. Miller}, to appear.
[21] Alexander, R.; Manselli, P.; Miller, K., Moving finite elements for the Stefan problem in two dimensions, () · Zbl 0493.65068
[22] Sod, G., J. comput. phys., 27, 1-31, (1978)
[23] Hindmarsh, A.C., Preliminary documentation of GEARIB: solution of implicit systems of ODE’s with banded Jacobian, Lawrence livermore laboratory report UCID-30130, (February 1976), Computer Documentation
[24] Hindmarsh, A.C., Solution of block-tridiagonal systems of linear algebraic equations, Lawrence livermore laboratory report UCID-30150, (February 1977), Computer Documentation
[25] Gelinas, R.J.; Hall, D.K.; Nelson, R.G., Nature, 266, No. 559, 229, (1977)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.