×

zbMATH — the first resource for mathematics

Über Schichten halbeinfacher Lie-Algebren. (German) Zbl 0484.17004

MSC:
17B20 Simple, semisimple, reductive (super)algebras
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Bala, P., Carter, R.W.: Classes of unipotent elements in simple algebraic groups. I und II, Math. Proc. Camb. Phil. Soc.79, 401-425 und80, 1-18 (1976) · Zbl 0364.22006 · doi:10.1017/S0305004100052403
[2] Borho, W., Jantzen, J.C.: Über primitive Ideale in Einhüllenden halbeinfacher Lie-Algebren. Invent. Math.39, 1-53 (1977) · Zbl 0339.17006 · doi:10.1007/BF01695950
[3] Borho, W., Kraft, H.: Über Bahnen und deren Deformationen bei linearen Aktionen reduktiver Gruppen. Comment. Math. Helv.54, 61-104 (1979) · Zbl 0395.14013 · doi:10.1007/BF02566256
[4] Borho, W.: Definition einer Dixmier-Abbildung für \(\mathfrak{s}\mathfrak{l}(n,\mathbb{C})\) . Inv. Math.40, 143-169 (1977) · Zbl 0346.17014 · doi:10.1007/BF01390343
[5] Borho, W.: Zum Induzieren unipotenter Klassen. Abhdl. Math. Sem. Univ. Hamburg50, 1-4 (1981) · Zbl 0495.20019 · doi:10.1007/BF02941207
[6] Dixmier, J.: Enveloping algebras. Amsterdam-New York-Oxford: North-Holland 1977 · Zbl 0346.17010
[7] Dixmier, J.: Polarisation dans les algébres de Lie semi-simples complexes. Bull. Sci. Math.99, 45-63 (1975) · Zbl 0314.17009
[8] Dynkin, E.B.: Semisimple subalgebras of semi-simple Lie algebras. Amer. Math. Soc. Transl. (2)6, 111-244 (1957) · Zbl 0077.03404
[9] Ela?vili, A.G.: Die Zentralisatoren nilpotenter Elemente in halbeinfachen Lie-Algebren (Russisch). Trudy Tbilisskogo Matematicheskogo Instituta imeni A.M. Razmadze (Tiflis)46, 109-132 (1975)
[10] Ela?vili, A.G., Panov, A.N.: Polarisierungen in halbeinfachen Lie-Algebren (Russisch). Bull. Acad. Sci. (Georgian SSR)87, 25-28 (1977)
[11] Hesselink, W.H.: Singularities in the nilpotent scheme of a classical group. Trans. AMS222, 1-32 (1976) · Zbl 0332.14017 · doi:10.1090/S0002-9947-1976-0429875-8
[12] Hesselink, W.H.: Polarizations in the classical groups. Math. Z.160, 217-234 (1978) · Zbl 0372.20030 · doi:10.1007/BF01237035
[13] Kostant, B.: Lie group representations on polynomial rings. Amer. J. Math.85, 327-404 (1963) · Zbl 0124.26802 · doi:10.2307/2373130
[14] Kraft, H.: Parametrisierung von Konjugationsklassen in \(\mathfrak{s}\mathfrak{l}_n \) . Math. Ann.234, 209-220 (1978) · Zbl 0369.17003 · doi:10.1007/BF01420644
[15] Lusztig, G., Spaltenstein, N.: Induced unipotent classes. J. London Math. Soc. · Zbl 0407.20035
[16] Steinberg, R.: Conjugacy classes in algebraic groups. Lecture Notes in Math.366. Berlin-Heidelberg-New York: Springer 1974 · Zbl 0281.20037
[17] Macdonald, I.G.: Some irreducible representations of Weyl groups. Bull. London Math. Soc.4, 148-150 (1972) · Zbl 0251.20043 · doi:10.1112/blms/4.2.148
[18] Blank, M.: Macdonald-Darstellungen der Weyl-GruppenW(E 6) undW(E 7). Diplomarbeit, Bonn 1980
[19] Brieskorn, E.: Singular elements of semisimple algebraic groups. In: Actes Congrés Int. Math., t.2, 279-284 (1970)
[20] Hotta, R., Springer, T.A.: A specialization theorem for certain Weyl group representations and an application to the Green polynomials of unitary groups. Invent. math.41, (1970), 113-127 · Zbl 0389.20037 · doi:10.1007/BF01418371
[21] Howlett, R.B.: Normalizers of parabolic subgroups of reflection groups. J. London Math. Soc.21, 62-80 (1980) · Zbl 0427.20040 · doi:10.1112/jlms/s2-21.1.62
[22] Kempken, G.: Induced conjugacy classes in classical Lie-Algebras. Abhdl. Math. Sem. Univ. Hamburg (einger. Okt. 1981) · Zbl 0495.17003
[23] Kostant, B.: Lie-group representations on polynomial rings, Amer. J. Math.85, 327-404 (1963) · Zbl 0124.26802 · doi:10.2307/2373130
[24] Luna, D.: Adhérences d’orbite et invariants. Invent. Math.29, 231-238 (1975) · Zbl 0315.14018 · doi:10.1007/BF01389851
[25] Luna, D., Richardson, R.W.: A generalization of the Chevalley restriction theorem. Duke Math. J.46, 487-496 (1979) · Zbl 0444.14010 · doi:10.1215/S0012-7094-79-04623-4
[26] Ozeki, H., Wakimoto, M.: On polarizations of certain homogeneous spaces. Hiroshima Math. J.2, 445-482 (1972) · Zbl 0267.22011
[27] Peterson, D.: Geometry of the Adjoint Representation of a Complex Semisimple Lie-Algebra. Ph. D. Thesis, Harvard University 1978
[28] Slodowy, P.: Simple singularities and simple algebraic groups, Lecture Notes in Math.815 (1980) · Zbl 0441.14002
[29] Spaltenstein, N., Ela?vili, A.G.: Vortragsberichte Oberwolfach 1979, Tagung ?Transformationsgruppen und Invarianten-Theorie?
[30] Spaltenstein, N.: Nilpotent classes and sheets of Lie algebras in bad characteristic; preprint, Konferenz über ?Algebraic groups: Invariants and Representations? Trento, Juni 1981
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.