×

zbMATH — the first resource for mathematics

Structural diversity in the lattice of equational theories. (English) Zbl 0485.08007

MSC:
08B15 Lattices of varieties
08C10 Axiomatic model classes
06B20 Varieties of lattices
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] K. Baker,Equational classes of modular lattices, Pacific J. Math.28 (1969), 9–15. · Zbl 0174.29802
[2] K. Baker,Equational axioms for classes of lattices, Bull. A.M.S.71 (1971), 97–102. · Zbl 0209.31901 · doi:10.1090/S0002-9904-1971-12618-6
[3] D. Bean, A. Ehrenfeucht, andG. McNulty,Avoidable patterns in strings of symbols, to appear in the Pacific J Mathematics. · Zbl 0428.05001
[4] A. Birjukov,Varities of idempotent semigroups, Algebra i Logika9 (1970) 255–273.
[5] G. Birkhoff,Lattice Theory 3rd edition, Amer. Math. Soc. Providence, 1967. · Zbl 0153.02501
[6] A. Bol’bot,Varities of \(\Omega\)-algebras, Algebra i Logika13 (1970) 406–414.
[7] S. Burris,On the structure of the lattice of equational classes of L(\(\tau\)), Algebra Universalis1 (1971) 39–45. · Zbl 0219.08001 · doi:10.1007/BF02944953
[8] S. Burris andE. Nelson, Embedding the dual of\(\Pi\) m in the lattice of equational classes of commutative semigroups, Proc. Amer. Math. Soc.30 (1971) 37–39. · Zbl 0215.40002
[9] S. Burris andE. Nelson, Embedding the dual of\(\Pi\) w in the lattice of equational classes of semigroups, Algebra Universalis1 (1971) 248–254. · Zbl 0227.08006 · doi:10.1007/BF02944986
[10] S. Burris andH. Sankappanavar,Lattice-theoretic decision problems in universal algebra, Algebra Universalis5 (1975), 163–177. · Zbl 0322.02045 · doi:10.1007/BF02485250
[11] C. Chang andH. Keisler,Model Theory, North-Holland Publishing Company, Amsterdam, 1973.
[12] T. Evans,The lattice of semigroup varieties, Semigroup Forum2 (1971) 1–43. · Zbl 0225.20043 · doi:10.1007/BF02572269
[13] C. Fennemore,All varieties of bands, Semigroup Forum1 (1970) 172–179. · Zbl 0206.30401 · doi:10.1007/BF02573031
[14] R. Freese,The structure of modular lattices of width four with applications to the varieties of lattices, Mem. Amer. Math. Soc. Vol. 9 no. 181 (1977) pp. 91. · Zbl 0358.06022
[15] J. Gerhard,The lattice of equational classes of idempotent semigroups, J. Algebra15 (1970) 195–224. · Zbl 0194.02701 · doi:10.1016/0021-8693(70)90073-6
[16] G. Gratzer,Universal Algebra, second edition, Springer-Verlag, New York, 1979.
[17] E. Jacobs andR. Schwabauer,The lattice of equational classes of algebras with one unary operation, Amer. Math. Monthly,71 (1964) 151–155. · Zbl 0117.26003 · doi:10.2307/2311743
[18] J. Jezek,Primitive classes of algebras with unary and nullary operations, Colloq. Math.20 (1969) 159–179. · Zbl 0188.04801
[19] J. Jezek,On atoms in lattices of primitive classes, Comment. Math. Univ. Carolina11 (1970) 515–532. · Zbl 0211.03002
[20] J. Jezek,Intervals in the lattice of varieties, Algebra Universalis,6 (1976). · Zbl 0359.20037
[21] B. Josson,Sums of finitely based lattice varieties, Advances in Math.14 (1976) 454–468. · Zbl 0296.06004 · doi:10.1016/0001-8708(74)90040-1
[22] –,The variety covering the variety of all modular lattices, Math. Scand.41 (1977) 5–14. · Zbl 0373.06004
[23] B. Jonsson, G. McNulty, andR. Quackenbush,Ascending and descending varietal chains of a variety, Canad. J. Math.27 (1975) 25–32. · Zbl 0305.08003 · doi:10.4153/CJM-1975-004-2
[24] B. Jonsson andE. Nelson,Relatively free products in regular varieties, Algebra Universalis4 (1974) 14–19. · Zbl 0319.08002 · doi:10.1007/BF02485701
[25] J. Kalicki,The number of equationally complete classes of equations, Nederl. Akad. Wetensch. Proc. Ser. A. 58 (1955) 660–662. · Zbl 0073.24601
[26] A. Mal’cev,On the general theory of algebraic systems (in Russian) Math. Sbornik (N.S.)35 (77) (1954) 3–20. · Zbl 0057.02403
[27] R. McKenzie,Equational bases for lattice theories, Math. Scand.27 (1970) 24–38. · Zbl 0307.08001
[28] –,Equational bases for lattice theories, Math. Scand.3 (1971) 197–237. · Zbl 0328.02038
[29] G. McNulty,Structural diversity in the lattice of equational theories, Notices Amer. Math. Soc.20 (1973) A-33.
[30] –,Structural diversity in the lattice of equational theories, II, Notices Amer. Math. Soc.20 (1973) A-448.
[31] –,Structural diversity in the lattice of equational theories, III, Notices Amer. Math. Soc.23 (1976) A-401.
[32] –,The decision problem for equational bases of algebras, Annals of Math. Logic11 (1976) 193–259. · Zbl 0376.08005 · doi:10.1016/0003-4843(76)90009-7
[33] –,Undecidable properties of finite sets of equations, J. Symbolic Logic11 (1976) 589–604. · Zbl 0375.02040
[34] E. Nelson,The lattice of equational classes of semigroups with zero, Canad. Math. Bull.14 (1971) 531–535 · Zbl 0227.08005 · doi:10.4153/CMB-1971-094-3
[35] –,The lattice of equational classes of commutative semigroups, Canad. J. Math.23 (1971) 875–595. · Zbl 0226.08002 · doi:10.4153/CJM-1971-098-0
[36] H. Neumann,Varieties of Groups, Springer-Verlag, Berlin, 1967. · Zbl 0149.26704
[37] P. Perkins,Bases for equational theories of semigroups, J. Algebra11 (1969) 298–314. · Zbl 0186.03401 · doi:10.1016/0021-8693(69)90058-1
[38] D. Pigozzi,Equational logic and equational theories of algebras, technical report, Purdue University 1970, reissued at Iowa State University 1975.
[39] A. Pixley,Local Mal’cev conditions, Canad. Math. Bull.15 (1972) 559–568. · Zbl 0254.08009 · doi:10.4153/CMB-1972-098-8
[40] P. Pudlak andJ. Tuma,Every finite lattice can be embedded in the lattice of all equivalence relations over a finite set, Algebra Universalis, to appear. · Zbl 0363.06006
[41] D. Sachs,Identities in finite partition lattices, Proc. Amer. Math. Soc.12 (1961) 944–945. · Zbl 0101.02201 · doi:10.1090/S0002-9939-1961-0133267-3
[42] D. Scott,Equationally complete extensions of finite algebras, Nederl. Akad. Wetensch. (Ser. A)59 (1956) 35–38. · Zbl 0073.24602
[43] A. Tarski,Equational logic and equational theories of algebras, 275–288 in:H. A. Schmidt,K. Schütte, andH. J. Thiele, eds.,Contributions to Mathematical Logic, North-Holland, Amsterdam, 1968. · Zbl 0209.01402
[44] W. Taylor,Characterizing Mal’cev conditions, Algebra Universalis3 (1973) 351–397. · Zbl 0304.08003 · doi:10.1007/BF02945141
[45] W. Taylor,Equational logic, Houston Journal of Math., (survey issue, 1979). · Zbl 0421.08004
[46] A. Trahtman,Covering elements in the lattice of varieties of algebras, Mat. Zametki15 (1974) 307–312. · Zbl 0361.08012
[47] P. Whitman,Lattices, equivalence relations, and subgroups, Bull. Amer. Math. Soc.52 (1946) 507–522. · Zbl 0060.06505 · doi:10.1090/S0002-9904-1946-08602-4
[48] R. Wille,Kongruenzklassengeometrien, Lecture Note in Math. no. 113, Springer-Verlag, Berlin, 1970.
[49] G. McNulty,Covering in the lattice of equational theories and some properties of term finite theories, to appear. · Zbl 0509.08013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.