×

zbMATH — the first resource for mathematics

Finite dimensional Teichmueller spaces and generalizations. (English) Zbl 0485.30002

MSC:
30-02 Research exposition (monographs, survey articles) pertaining to functions of a complex variable
32G15 Moduli of Riemann surfaces, Teichmüller theory (complex-analytic aspects in several variables)
30Fxx Riemann surfaces
30C62 Quasiconformal mappings in the complex plane
14H20 Singularities of curves, local rings
14H15 Families, moduli of curves (analytic)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] William Abikoff, Some remarks on Kleinian groups, Advances in the Theory of Riemann Surfaces (Proc. Conf., Stony Brook, N.Y., 1969) Ann. of Math. Studies, No. 66. Princeton Univ. Press, Princeton, N.J., 1971, pp. 1 – 5. · Zbl 1255.30042
[2] William Abikoff, On boundaries of Teichmüller spaces and on Kleinian groups. III, Acta Math. 134 (1975), 211 – 237. · Zbl 0322.30017
[3] William Abikoff, Augmented Teichmüller spaces, Bull. Amer. Math. Soc. 82 (1976), no. 2, 333 – 334. · Zbl 0333.32021
[4] William Abikoff, Degenerating families of Riemann surfaces, Ann. of Math. (2) 105 (1977), no. 1, 29 – 44. · Zbl 0347.32010
[5] William Abikoff, The real analytic theory of Teichmüller space, Lecture Notes in Mathematics, vol. 820, Springer, Berlin, 1980. · Zbl 0452.32015
[6] Lars V. Ahlfors, On quasiconformal mappings, J. Analyse Math. 3 (1954), 1 – 58; correction, 207 – 208. · Zbl 0057.06506
[7] Lars V. Ahlfors, The complex analytic structure of the space of closed Riemann surfaces., Analytic functions, Princeton Univ. Press, Princton, N.J., 1960, pp. 45 – 66. · Zbl 0100.28903
[8] Lars V. Ahlfors, Curvature properties of Teichmüller’s space, J. Analyse Math. 9 (1961/1962), 161 – 176. · Zbl 0148.31201
[9] Lars V. Ahlfors, Some remarks on Teichmüller’s space of Riemann surfaces, Ann. of Math. (2) 74 (1961), 171 – 191. · Zbl 0146.30602
[10] Lars V. Ahlfors, Quasiconformal reflections, Acta Math. 109 (1963), 291 – 301. · Zbl 0121.06403
[11] Lars V. Ahlfors, Finitely generated Kleinian groups, Amer. J. Math. 86 (1964), 413 – 429. · Zbl 0133.04201
[12] Lars V. Ahlfors, Fundamental polyhedrons and limit point sets of Kleinian groups, Proc. Nat. Acad. Sci. U.S.A. 55 (1966), 251 – 254. · Zbl 0132.30801
[13] Lars V. Ahlfors, Lectures on quasiconformal mappings, Manuscript prepared with the assistance of Clifford J. Earle, Jr. Van Nostrand Mathematical Studies, No. 10, D. Van Nostrand Co., Inc., Toronto, Ont.-New York-London, 1966. · Zbl 0138.06002
[14] Lars V. Ahlfors, Quasiconformal mappings, Teichmüller spaces, and Kleinian groups, Proceedings of the International Congress of Mathematicians (Helsinki, 1978), Acad. Sci. Fennica, Helsinki, 1980, pp. 71 – 84.
[15] Lars Ahlfors and Lipman Bers, Riemann’s mapping theorem for variable metrics, Ann. of Math. (2) 72 (1960), 385 – 404. · Zbl 0104.29902
[16] Walter L. Baily Jr., On the theory of \?-functions, the moduli of abelian varieties, and the moduli of curves, Ann. of Math. (2) 75 (1962), 342 – 381. · Zbl 0147.39702
[17] Lipman Bers, Quasiconformal mappings and Teichmüller’s theorem, Analytic functions, Princeton Univ. Press, Princeton, N.J., 1960, pp. 89 – 119. · Zbl 0100.28904
[18] Lipman Bers, Simultaneous uniformization, Bull. Amer. Math. Soc. 66 (1960), 94 – 97. · Zbl 0090.05101
[19] Lipman Bers, Correction to ”Spaces of Riemann surfaces as bounded domains”, Bull. Amer. Math. Soc. 67 (1961), 465 – 466.
[20] Lipman Bers, Uniformization by Beltrami equations, Comm. Pure Appl. Math. 14 (1961), 215 – 228. · Zbl 0138.06101
[21] L. Bers, On moduli of Riemann surfaces, Lecture notes, E.T.H., Zurich, 1964.
[22] L. Bers, Automorphic forms and general Teichmüller spaces, Proc. Conf. Complex Analysis (Minneapolis, 1964) Springer, Berlin, 1965, pp. 109 – 113.
[23] Lipman Bers, Automorphic forms and Poincaré series for infinitely generated Fuchsian groups, Amer. J. Math. 87 (1965), 196 – 214. · Zbl 0141.27502
[24] Lipman Bers, A non-standard integral equation with applications to quasiconformal mappings, Acta Math. 116 (1966), 113 – 134. · Zbl 0145.09502
[25] Lipman Bers, On boundaries of Teichmüller spaces and on Kleinian groups. I, Ann. of Math. (2) 91 (1970), 570 – 600. · Zbl 0197.06001
[26] Lipman Bers, Uniformization, moduli, and Kleinian groups, Bull. London Math. Soc. 4 (1972), 257 – 300. · Zbl 0257.32012
[27] Lipman Bers, Fiber spaces over Teichmüller spaces, Acta. Math. 130 (1973), 89 – 126. · Zbl 0249.32014
[28] Lipman Bers, On spaces of Riemann surfaces with nodes, Bull. Amer. Math. Soc. 80 (1974), 1219 – 1222. · Zbl 0294.32017
[29] Lipman Bers, Deformations and moduli of Riemann surfaces with nodes and signatures, Math. Scand. 36 (1975), 12 – 16. Collection of articles dedicated to Werner Fenchel on his 70th birthday. · Zbl 0301.32019
[30] Lipman Bers, Quasiconformal mappings, with applications to differential equations, function theory and topology, Bull. Amer. Math. Soc. 83 (1977), no. 6, 1083 – 1100. · Zbl 0419.30016
[31] Lipman Bers, An extremal problem for quasiconformal mappings and a theorem by Thurston, Acta Math. 141 (1978), no. 1-2, 73 – 98. · Zbl 0389.30018
[32] Lipman Bers, The action of the modular group on the complex boundary, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) Ann. of Math. Stud., vol. 97, Princeton Univ. Press, Princeton, N.J., 1981, pp. 33 – 52.
[33] Lipman Bers and Leon Ehrenpreis, Holomorphic convexity of Teichmüller spaces, Bull. Amer. Math. Soc. 70 (1964), 761 – 764. · Zbl 0136.07004
[34] Lipman Bers and Leon Greenberg, Isomorphisms between Teichmüller spaces, Advances in the Theory of Riemann Surfaces (Proc. Conf., Stony Brook, N.Y., 1969) Ann. of Math. Studies, No. 66, Princeton Univ. Press, Princeton, N.J., 1971, pp. 53 – 79. · Zbl 0224.32013
[35] Lipman Bers and Irwin Kra , A crash course on Kleinian groups, Lecture Notes in Mathematics, Vol. 400, Springer-Verlag, Berlin-New York, 1974. Lectures given at a special session at the Annual Winter Meeting of the American Mathematical Society at San Francisco, Calif., January 1974; Dedicated to Lars V. Ahlfors. · Zbl 0279.00010
[36] A. Beurling and L. Ahlfors, The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956), 125 – 142. · Zbl 0072.29602
[37] Rufus Bowen, Hausdorff dimension of quasicircles, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 11 – 25. · Zbl 0439.30032
[38] P. Buser, Riemannsche Flächen und Längenspektrum vom trigonometrischen Standpunkt aus Habilitationsschrift, Universität Bonn, 1980.
[39] Tienchen Chu, The Weil-Petersson metric in the moduli space, Chinese J. Math. 4 (1976), no. 2, 29 – 51. · Zbl 0344.32006
[40] P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 75 – 109. · Zbl 0181.48803
[41] Clifford J. Earle, The Teichmüller space of an arbitrary Fuchsian group, Bull. Amer. Math. Soc. 70 (1964), 699 – 701. · Zbl 0145.09602
[42] Clifford J. Earle, Teichmüller spaces of groups of the second kind, Acta Math. 112 (1964), 91 – 97. · Zbl 0145.09601
[43] Clifford J. Earle, Reduced Teichmüller spaces, Trans. Amer. Math. Soc. 126 (1967), 54 – 63. · Zbl 0152.27801
[44] Clifford J. Earle, On holomorphic families of pointed Riemann surfaces, Bull. Amer. Math. Soc. 79 (1973), 163 – 166. · Zbl 0253.32010
[45] Clifford J. Earle, On the Carathéodory metric in Teichmüller spaces, Discontinuous groups and Riemann surfaces (Proc. Conf., Univ. Maryland, College Park, Md., 1973) Princeton Univ. Press, Princeton, N.J., 1974, pp. 99 – 103. Ann. of Math. Studies, No. 79.
[46] Clifford J. Earle, The Teichmüller distance is differentiable, Duke Math. J. 44 (1977), no. 2, 389 – 397. · Zbl 0352.32006
[47] Clifford J. Earle, Families of Riemann surfaces and Jacobi varieties, Ann. Math. (2) 107 (1978), no. 2, 255 – 286. · Zbl 0353.32027
[48] Clifford J. Earle and James Eells Jr., On the differential geometry of Teichmüller spaces, J. Analyse Math. 19 (1967), 35 – 52. · Zbl 0156.30604
[49] Clifford J. Earle and James Eells, A fibre bundle description of Teichmüller theory, J. Differential Geometry 3 (1969), 19 – 43. C. J. Earle and A. Schatz, Teichmüller theory for surfaces with boundary, J. Differential Geometry 4 (1970), 169 – 185. · Zbl 0185.32901
[50] Clifford J. Earle and Irwin Kra, On holomorphic mappings between Teichmüller spaces, Contributions to analysis (a collection of papers dedicated to Lipman Bers), Academic Press, New York, 1974, pp. 107 – 124. · Zbl 0307.32016
[51] Clifford J. Earle and Irwin Kra, On sections of some holomorphic families of closed Riemann surfaces, Acta Math. 137 (1976), no. 1-2, 49 – 79. · Zbl 0331.32018
[52] C. J. Earle and A. Marden (to appear).
[53] Michael Engber, Teichmüller spaces and representability of functors, Trans. Amer. Math. Soc. 201 (1975), 213 – 226. · Zbl 0294.32014
[54] Travaux de Thurston sur les surfaces, Astérisque, vol. 66, Société Mathématique de France, Paris, 1979 (French). Séminaire Orsay; With an English summary. · Zbl 0731.57001
[55] L. Ford, Automorphic functions , Chelsea, New York, 1951. · JFM 55.0810.04
[56] R. Fricke and F. Klein, Vorlesungen über die Theorie der automorphen Funktionen (two volumes), B. G. Teubner, 1889 and 1926. · JFM 42.0452.01
[57] Frederick P. Gardiner, On relative Teichmüller spaces and a globalization principle in Riemann surface theory, J. Analyse Math. 35 (1979), 1 – 12. · Zbl 0427.32022
[58] F. W. Gehring, Univalent functions and the Schwarzian derivative, Comment. Math. Helv. 52 (1977), no. 4, 561 – 572. · Zbl 0373.30013
[59] F. W. Gehring, Spirals and the universal Teichmüller space, Acta Math. 141 (1978), no. 1-2, 99 – 113. · Zbl 0393.30015
[60] Jane Gilman, On the Nielsen type and the classification for the mapping class group, Adv. in Math. 40 (1981), no. 1, 68 – 96. · Zbl 0474.57005
[61] L. Greenberg, Fundamental polyhedra for kleinian groups, Ann. of Math. (2) 84 (1966), 433 – 441. · Zbl 0161.27405
[62] A. Grothendieck, Techniques de construction en géometrie analytique, Sém. Cartan (1961/62) exp. 17, (with an appendix by J. P. Serre).
[63] Kyong T. Hahn, On completeness of the Bergman metric and its subordinate metric, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), no. 12, 4294. · Zbl 0337.32006
[64] N. Halpern, Some contributions to the theory of Riemann surfaces, Thesis, Columbia University, 1978.
[65] Richard S. Hamilton, Extremal quasiconformal mappings with prescribed boundary values, Trans. Amer. Math. Soc. 138 (1969), 399 – 406. · Zbl 0209.11102
[66] W. J. Harvey, Spaces of discrete groups, Discrete groups and automorphic functions (Proc. Conf., Cambridge, 1975), Academic Press, London, 1977, pp. 295 – 348.
[67] John Hamal Hubbard, Sur les sections analytiques de la courbe universelle de Teichmüller, Mem. Amer. Math. Soc. 4 (1976), no. 166, ix+137. · Zbl 0318.32020
[68] John Hubbard and Howard Masur, Quadratic differentials and foliations, Acta Math. 142 (1979), no. 3-4, 221 – 274. · Zbl 0415.30038
[69] James A. Jenkins, On the existence of certain general extremal metrics, Ann. of Math. (2) 66 (1957), 440 – 453. · Zbl 0082.06301
[70] Linda Keen, On Fricke moduli, Advances in the Theory of Riemann Surfaces (Proc. Conf., Stony Brook, N.Y., 1969) Ann. of Math. Studies, No. 66. Princeton Univ. Press, Princeton, N.J., 1971, pp. 205 – 224. · Zbl 0237.32013
[71] Steven P. Kerckhoff, The asymptotic geometry of Teichmüller space, Topology 19 (1980), no. 1, 23 – 41. · Zbl 0439.30012
[72] Shoshichi Kobayashi, Hyperbolic manifolds and holomorphic mappings, Pure and Applied Mathematics, vol. 2, Marcel Dekker, Inc., New York, 1970. · Zbl 0247.32015
[73] Irwin Kra, Automorphic forms and Kleinian groups, W. A. Benjamin, Inc., Reading, Mass., 1972. Mathematics Lecture Note Series. · Zbl 0253.30015
[74] Irwin Kra, On new kinds of Teichmüller spaces, Israel J. Math. 16 (1973), 237 – 257. · Zbl 0279.32009
[75] Irwin Kra, On the Nielsen-Thurston-Bers type of some self-maps of Riemann surfaces, Acta Math. 146 (1981), no. 3-4, 231 – 270. · Zbl 0477.32024
[76] I. Kra and B. Maskit, Involutions on Kleinian groups, Bull. Amer. Math. Soc. 78 (1972), 801 – 805. · Zbl 0258.30017
[77] W. Kraus, Über den Zusammenhang einiger Charakteristiken eines eintach zusammehangenden Bereiches mit der Kreisabbildung, Mitt. Math. Sem. Giessen 21 (1932), 1-28. · JFM 58.1142.02
[78] Saul Kravetz, On the geometry of Teichmüller spaces and the structure of their modular groups, Ann. Acad. Sci. Fenn. Ser. A I No. 278 (1959), 35. · Zbl 0168.04601
[79] S. L. Kruškal\(^{\prime}\), On a Teichmüller theorem on extremal quasiconformal mappings, Sibirsk. Mat. Ž. 8 (1967), 313 – 332 (Russian).
[80] Samuil L. Krushkal\(^{\prime}\), Quasiconformal mappings and Riemann surfaces, V. H. Winston & Sons, Washington, D.C.; John Wiley & Sons, New York-Toronto, Ont.-London, 1979. Edited by Irvin Kra [Irwin Kra]; Translated from the Russian; A Halsted Press Book; Scripta Series in Mathematics; With a foreword by Lipman Bers. · Zbl 0479.30012
[81] O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, 2nd ed., Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K. W. Lucas; Die Grundlehren der mathematischen Wissenschaften, Band 126. · Zbl 0267.30016
[82] Albert Marden, On homotopic mappings of Riemann surfaces, Ann. of Math. (2) 90 (1969), 1 – 8. · Zbl 0214.08903
[83] Bernard Maskit, On Klein’s combination theorem. II, Trans. Amer. Math. Soc. 131 (1968), 32 – 39. · Zbl 0162.10602
[84] Bernard Maskit, On boundaries of Teichmüller spaces and on Kleinian groups. II, Ann. of Math. (2) 91 (1970), 607 – 639. · Zbl 0197.06003
[85] Bernard Maskit, On Klein’s combination theorem. III, Advances in the Theory of Riemann Surfaces (Proc. Conf., Stony Brook, N.Y., 1969) Ann. of Math. Studies, No. 66, Princeton Univ. Press, Princeton, N.J., 1971, pp. 297 – 316. · Zbl 0222.30029
[86] Bernard Maskit, Moduli of marked Riemann surfaces, Bull. Amer. Math. Soc. 80 (1974), 773 – 777. · Zbl 0292.30016
[87] Bernard Maskit, On the classification of Kleinian groups. I. Koebe groups, Acta Math. 135 (1975), no. 3 – 4, 249 – 270. , https://doi.org/10.1007/BF02392021 Bernard Maskit, On the classification of Kleinian groups. II. Signatures, Acta Math. 138 (1976), no. 1 – 2, 17 – 42. · Zbl 0358.30011
[88] Bernard Maskit, On the classification of Kleinian groups. I. Koebe groups, Acta Math. 135 (1975), no. 3 – 4, 249 – 270. , https://doi.org/10.1007/BF02392021 Bernard Maskit, On the classification of Kleinian groups. II. Signatures, Acta Math. 138 (1976), no. 1 – 2, 17 – 42. · Zbl 0358.30011
[89] Howard Masur, On a class of geodesics in Teichmüller space, Ann. of Math. (2) 102 (1975), no. 2, 205 – 221. · Zbl 0322.32010
[90] Howard Masur, Extension of the Weil-Petersson metric to the boundary of Teichmuller space, Duke Math. J. 43 (1976), no. 3, 623 – 635. · Zbl 0358.32017
[91] Howard Masur, The Jenkins-Strebel differentials with one cylinder are dense, Comment. Math. Helv. 54 (1979), no. 2, 179 – 184. · Zbl 0407.30036
[92] J. Peter Matelski, A compactness theorem for Fuchsian groups of the second kind, Duke Math. J. 43 (1976), no. 4, 829 – 840. · Zbl 0341.30020
[93] R. T. Miller, Nielsen’s view point on geodesic laminations, Advances in Math. (to appear).
[94] David Mumford, The structure of the moduli spaces of curves and Abelian varieties, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 457 – 465. · Zbl 0222.14023
[95] David Mumford, Curves and their Jacobians, The University of Michigan Press, Ann Arbor, Mich., 1975. · Zbl 0316.14010
[96] Zeev Nehari, The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc. 55 (1949), 545 – 551. · Zbl 0035.05104
[97] Brian O’Byrne, On Finsler geometry and applications to Teichmüller spaces, Advances in the Theory of Riemann Surfaces (Proc. Conf., Stony Brook, N.Y., 1969) Ann. of Math. Studies, No. 66, Princeton Univ. Press, Princeton, N.J., 1971, pp. 317 – 328.
[98] David B. Patterson, The Teichmüller spaces are distinct, Proc. Amer. Math. Soc. 35 (1972), 179 – 182. · Zbl 0279.32010
[99] R. Michael Porter, Computation of a boundary point of Teichmüller space, Bol. Soc. Mat. Mexicana (2) 24 (1979), no. 1, 15 – 26. · Zbl 0468.30037
[100] H. E. Rauch, On the transcendental moduli of algebraic Riemann surfaces, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 42 – 49. · Zbl 0067.30502
[101] H. E. Rauch, A transcendental view of the space of algebraic Riemann surfaces, Bull. Amer. Math. Soc. 71 (1965), 1 – 39. · Zbl 0154.33002
[102] Edgar Reich and Kurt Strebel, Extremal plane quasiconformal mappings with given boundary values, Bull. Amer. Math. Soc. 79 (1973), 488 – 490. · Zbl 0284.30011
[103] Edgar Reich and Kurt Strebel, Extremal quasiconformal mappings with given boundary values, Contributions to analysis (a collection of papers dedicated to Lipman Bers), Academic Press, New York, 1974, pp. 375 – 391. · Zbl 0318.30022
[104] H. L. Royden, Report on the Teichmüller metric, Proc. Nat. Acad. Sci. U.S.A. 65 (1970), 497 – 499. · Zbl 0189.36401
[105] H. L. Royden, Automorphisms and isometries of Teichmüller space, Advances in the Theory of Riemann Surfaces (Proc. Conf., Stony Brook, N.Y., 1969) Ann. of Math. Studies, No. 66. Princeton Univ. Press, Princeton, N.J., 1971, pp. 369 – 383. · Zbl 0218.32011
[106] M. Schiffer, A variational method for univalent quasiconformal mappings, Duke Math. J. 33 (1966), 395 – 411. · Zbl 0152.07303
[107] Kurt Strebel, Zur Frage der Eindeutigkeit extremaler quasikonformer Abbildungen des Einheitskreises. II, Comment. Math. Helv. 39 (1964), 77 – 89 (German). · Zbl 0147.07202
[108] Kurt Strebel, Über quadratische Differentiale mit geschlossenen Trajektorien und extremale quasikonforme Abbildungen, Festband 70. Geburtstag R. Nevanlinna, Springer, Berlin, 1966, pp. 105 – 127 (German). · Zbl 0156.09002
[109] Kurt Strebel, On quadratic differentials and extremal quasi-conformal mappings, Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974) Canad. Math. Congress, Montreal, Que., 1975, pp. 223 – 227. · Zbl 0334.30012
[110] Kurt Strebel, On quadratic differentials with closed trajectories on open Riemann surfaces, Ann. Acad. Sci. Fenn. Ser. A I Math. 2 (1976), 533 – 551. · Zbl 0381.30024
[111] Kurt Strebel, On lifts of extremal quasiconformal mappings, J. Analyse Math. 31 (1977), 191 – 203. · Zbl 0349.30016
[112] Kurt Strebel, On quasiconformal mappings of open Riemann surfaces, Comment. Math. Helv. 53 (1978), no. 3, 301 – 321. · Zbl 0421.30017
[113] Dennis Sullivan, On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) Ann. of Math. Stud., vol. 97, Princeton Univ. Press, Princeton, N.J., 1981, pp. 465 – 496.
[114] O. Teichmüller, Extremale quasikonforme Abbildungen und quadratische Differentiale, Preuss. Akad. 22 (1939). · JFM 66.1252.01
[115] Oswald Teichmüller, Bestimmung der extremalen quasikonformen Abbildungen bei geschlossenen orientierten Riemannschen Flächen, Abh. Preuss. Akad. Wiss. Math.-Nat. Kl. 1943 (1943), no. 4, 42 (German). · Zbl 0060.23313
[116] Oswald Teichmüller, Veränderliche Riemannsche Flächen, Deutsche Math. 7 (1944), 344 – 359 (German). · Zbl 0060.23201
[117] William P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.) 19 (1988), no. 2, 417 – 431. · Zbl 0674.57008
[118] W. P. Thurston, The geometry and topology of three-manifolds, Lecture Notes, Princeton University.
[119] P. Tukia, Quasiconformal extensions of quasisymmetric mappings compatible with a Fuchsian group (to appear). · Zbl 0562.30018
[120] André Weil, Modules des surfaces de Riemann, Séminaire Bourbaki; 10e année: 1957/1958. Textes des conférences; Exposés 152à 168; 2e éd.corrigée, Exposé 168, Secrétariat mathématique, Paris, 1958, pp. 7 (French). · Zbl 0084.28102
[121] Scott Wolpert, Noncompleteness of the Weil-Petersson metric for Teichmüller space, Pacific J. Math. 61 (1975), no. 2, 573 – 577. · Zbl 0327.32009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.