Embedding metric spaces into CPO’s. (English) Zbl 0485.68040


03D60 Computability and recursion theory on ordinals, admissible sets, etc.
06B23 Complete lattices, completions
54E35 Metric spaces, metrizability
Full Text: DOI


[1] Scott, D., Outline of the mathematical theory of computation, Proc. 4th Princeton conference on information science, (1970)
[2] Lacombe, D., Quelques procédés de définitions en topologie recursif, (), 129-158
[3] Martin-Löf, P., Notes on constructive mathematics, (1970), Almquist & Wiksell Stockholm · Zbl 0273.02021
[4] Smyth, M.B., Effectively given domains, Theoret. comput. sci., 5, 257-274, (1977) · Zbl 0429.03028
[5] Bourbaki, N., General topology, part 2, (1966), Addison-Wesley Reading, MA · Zbl 0145.19302
[6] Egli, H.; Constable, R.L., Computability concepts for programming language semantics, Theoret. comput. sci., 2, 133-145, (1976) · Zbl 0352.68042
[7] Markowsky, G.; Rosen, B.K., Bases for chain-complete posets, IBM research report RC 5363, (1975) · Zbl 0329.06001
[8] Scott, D., Continuous lattices, () · Zbl 0239.54006
[9] M. Nivat and A. Arnold, Calculus infinis, interpretations metriques et plus grands points fixes, TR 78-19, Laboratoire Informatique Théorique et Programmation, Paris. · Zbl 0486.68013
[10] Wright, J.B.; Wagner, E.G.; Thatcher, J.W., A uniform approach to inductive posets and inductive closure, Theoret. comput. sci., 7, 57-77, (1978) · Zbl 0732.06001
[11] Weihrauch, K.; Schreiber, U., Metric spaces defined by weighted algebraic Cpo’s, () · Zbl 0485.68040
[12] Kuratowski, K., Topology, (1966), Academic Press New York, London · Zbl 0158.40901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.