×

Quaternionic Kaehler manifolds. (English) Zbl 0486.53048


MSC:

53C55 Global differential geometry of Hermitian and Kählerian manifolds
53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Akizuki, Y., Nakano, S.: Note on Kodaira-Spencer’s proof of Lefschetz theorems. Proc. Japan Acad.30, 266-272 (1954) · Zbl 0059.14701
[2] Alekseevskii, D.V.: Riemannian spaces with exceptional holonomy groups. Functional Anal. Appl.2, 97-105 (1968)
[3] Alekseevskii, D.V.: Classification of quaternionic spaces with a transitive solvable group of motions. Math. USSR-Izv.9, 297-339 (1975) · Zbl 0324.53038
[4] Atiyah, M.F., Singer, I.M.: The index of elliptic operators: III. Ann. Math.87, 546-604 (1968) · Zbl 0164.24301
[5] Atiyah, M.F., Hitchin, N.J., Singer, I.M.: Self-duality in four-dimensional Riemannian geometry. Proc. Roy. Soc. London Ser. A:362, 425-461 (1978) · Zbl 0389.53011
[6] Bérard Bergery, L.: New examples of Einstein metrics. Mathematische Arbeitstagung, Bonn, 1979
[7] Berger, M.: Sur les groupes d’holonomie homogène des variétés à connexion affines et des variétés riemanniennes. Bull. Soc. Math. France83, 279-330 (1955) · Zbl 0068.36002
[8] Bogomolov, F.A.: Hamiltonian Kähler manifolds, Soviet Math. Dokl.19, 1462-1465 (1978) · Zbl 0418.53026
[9] Bonan, E.: Sur lesG-structures de type quaterniomen, Cahiers Topologie Géom. Différentielle9, 389-461 (1967)
[10] Boothby, W.: A note on homogeneous complex contact manifolds. Proc. Amer. Math. Soc.13, 276-280 (1962) · Zbl 0103.38703
[11] Calabi, E.: On Kähler manifolds with vanishing canonical class. In: Algebraic Geometry and Topology, in honor of Lefschetz, Princeton University Press, Princeton, 1957 · Zbl 0080.15002
[12] Calabi, E.: Isometric families of Kähler structures. In: The Chern Symposium 1979. Berlin-Heidelberg-New York: Springer 1980 · Zbl 0453.53048
[13] Friedrich, T., Kurke, H.: Compact four-dimensional self-dual Einstein manifolds with positive scalar curvature. Mathematische Nachrichten (in press 1982) · Zbl 0503.53035
[14] Gray, A.: A note on manifolds whose holonomy group is a subgroup ofSp(n)Sp(1), Michigan Math. J.16, 125-128 (1969) · Zbl 0177.50001
[15] Gray, A., Green, P.: Sphere transitive structures and the triality automorphism. Pacific J. Math.34, 83-96 (1970) · Zbl 0194.22804
[16] Hirzebruch, F.: Topological Methods in Algebraic Geometry, 3rd ed. Berlin-Heidelberg-New York: Springer 1966 · Zbl 0138.42001
[17] Hitchin, N.J.: Kählerian twistor spaces, Proc. London Math. Soc. (3)43, 133-150 (1981) · Zbl 0474.14024
[18] Ishihara, S.: Quaternion Kählerian manifolds. J. Differential Geometry9, 483-500 (1974) · Zbl 0297.53014
[19] Kobayashi, S.: On compact Kähler manifolds with positive Ricci tensor. Ann. Math.74, 381-385 (1961) · Zbl 0107.16002
[20] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, 2 volumes. New York: Interscience 1963, 1969 · Zbl 0119.37502
[21] Kobayashi, S., Ochiai, T.: Characterizations of complex projective spaces and hyperquadrics. J. Math. Kyoto Univ.13, 31-47 (1973) · Zbl 0261.32013
[22] Kraines, V.: Topology of quaternionic manifolds. Trans. Amer. Math. Soc.122, 357-367 (1966) · Zbl 0148.16101
[23] Lichnerowicz, A.: Spineurs harmoniques. C.R. Acad. Sci. Paris257, 7-9 (1963) · Zbl 0136.18401
[24] Marchiafava, S., Romani, G.: Sui fibrati con struttura quaternionale generlizzata. Ann. Mat. Pura Appl. (IV) CVII, 131-157 (1976) · Zbl 0356.55003
[25] Salamon, S.M.: Quaternionic Manifolds. D. Phil. Thesis, University of Oxford, 1980 · Zbl 0534.53030
[26] Wells, R.O., Jr.: Complex manifolds and mathematical physics. Bull. Am. Math. Soc.1 (2), 296-336 (1979) · Zbl 0444.32014
[27] Wolf, J.A.: Complex homogeneous contact manifolds and quaternionic symmetric spaces. J. Math. Mech.14, 1033-1047 (1965) · Zbl 0141.38202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.