×

zbMATH — the first resource for mathematics

An element-by-element solution algorithm for problems of structural and solid mechanics. (English) Zbl 0487.73083

MSC:
74S05 Finite element methods applied to problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Belytschko, T.; Mullen, R.: Mesh partitions of explicit-implicit time integration. Formulations and computational algorithms in finite element analysis (1977)
[2] Belytschko, T.; Mullen, R.: Stability of explicit-implicit mesh partitions in time integration. Internat. J. Numer. meths. Engrg. 12, No. 10, 1575-1586 (1979) · Zbl 0398.65059
[3] Douglas, J.: On the numerical integration of uxx + uyy = ut by implicit methods. J. soc. Indust. appl. Math. 3, 42-65 (1955)
[4] Dennis, J. E.; MorĂ©, J. J.: Quasi-Newton methods: motivation and theory. SIAM rev. 19, No. 1, 46-89 (1977) · Zbl 0356.65041
[5] Geradin, M.; Hogge, M. A.: Quasi-Newton iteration in nonlinear structural dynamics. Paper no. M7/1 (August 1979)
[6] Goudreau, G. L.; Hallquist, J. O.: Personal communication. (1981)
[7] Goudreau, G. L.; Taylor, R. L.: Evaluation of numerical integration methods in elastodynamics. Comput. meths. Appl. mech. Engrg. 2, 69-97 (1972) · Zbl 0255.73085
[8] Hibbitt, H. D.; Karlsson, B. I.: Analysis of pipe whip. ASME paper no. 79-PVP-122 (1979)
[9] Hilber, H. M.: Analysis and design of numerical integration methods in structural dynamics. Report no. EERC76-29 (1976)
[10] Hilber, H. M.; Hughes, T. J. R.: Collocation, dissipation and ’overshoot’ for time integration schemes in structural dynamics. Earthquake engrg. Structural dynamics 6, 99-118 (1978)
[11] Hilber, H. M.; Hughes, T. J. R.; Taylor, R. L.: Improved numerical dissipation for time integration algorithms in structural dynamics. Earthquake engrg. Structural dynamics 5, 283-292 (1977)
[12] T.J.R. Hughes, Analysis of transient algorithms with particular reference to stability behavior, in: T. Belytschko and T.J.R. Hughes, eds., Computational Methods in Transient Analysis (North-Holland, Amsterdam, to appear). · Zbl 0547.73070
[13] T.J.R. Hughes, I. Levit and J. Winget, Implicit, unconditionally stable, element-by-element algorithms for heat conduction analysis, J. Engrg. Mech. Div. ASCE (to appear).
[14] Hughes, T. J. R.; Liu, W. K.: Implicit-explicit finite elements in transient analysis: stability theory. J. appl. Mech. 45, 371-374 (1978) · Zbl 0392.73076
[15] Hughes, T. J. R.; Liu, W. K.: Implicit-explicit finite elements in transient analysis: implementation and numerical examples. J. appl. Mech. 45, 375-378 (1978) · Zbl 0392.73077
[16] Hughes, T. J. R.; Pister, K. S.; Taylor, R. L.: Implicit-explicit finite elements in nonlinear transient analysis. Comput. meths. Appl. mech. Engrg. 17/18, 159-182 (1979) · Zbl 0413.73074
[17] Hughes, T. J. R.; Stephenson, R. A.: Convergence of implicit-explicit algorithms in nonlinear transient analysis. Internat. J. Engrg. sci. 19, No. 2, 295-302 (1981) · Zbl 0445.73074
[18] Krieg, R. D.; Key, S. W.: Transient shell response by numerical time integration. Internat. J. Numer. meths. Engrg. 7, 273-286 (1973)
[19] Matthies, H.; Strang, G.: The solution of nonlinear finite element equations. Internal. J. numer. Meths. engrg. 14, No. 11, 1613-1626 (1979) · Zbl 0419.65070
[20] Newmark, N. M.: A method of computation for structural dynamics. J. engrg. Mech. div. ASCE, 67-94 (1959)
[21] Ortiz, M.; Pinsky, P. M.; Taylor, R. L.: Unconditionally stable element-by-element algorithms for dynamic problems. Comput. meths. Appl. mech. Engrg. 36, 223-239 (1983) · Zbl 0501.73068
[22] Peaceman, D. W.; Rachford, H. H.: The numerical solution of parabolic and elliptic differential equations. J. soc. Indust. appl. Math. 3, 28-41 (1955) · Zbl 0067.35801
[23] Rogallo, R. S.: Numerical experiments in homogeneous turbulence. Nasa tn 81315 (1981)
[24] Timoshenko, S.; Goodier, J. N.: Theory of elasticity. (1951) · Zbl 0045.26402
[25] Warming, R. F.; Beam, R. M.: On the construction and application of implicit factored schemes for conservation laws. SIAM-AMS proc. 11, 85-129 (1978) · Zbl 0392.65038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.