×

On the full automorphism group of a graph. (English) Zbl 0489.05028


MSC:

05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
20F29 Representations of groups as automorphism groups of algebraic systems
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] L. Babai, On a conjecture of M. E. Watkins on graphical regular representations of groups,Compositio Math.,37 (1978), 291–296. · Zbl 0401.20004
[2] L. Babai, Finite digraphs with given regular automorphism groups,Periodica Math. Hung. to appear. · Zbl 0452.05030
[3] H. Bender, Transitive Gruppen gerader Ordnung, in denen jede Involution genau einen Punkt festläßt,J. Algebra,17 (1971), 527–554. · Zbl 0237.20014
[4] H. Bender, The Brauer-Suzuki-Wall theorem,Ill. J. Math.,18 (1974), 229–235. · Zbl 0279.20014
[5] R. Brauer, M. Suzuki andG. E. Wall, A characterization of the two-dimensional unimodular projective groups over finite fields,Ill. J. Math.,2 (1958), 718–745. · Zbl 0083.25202
[6] J. K. Doyle, Graphical Frobenius representations of abstract groups,submitted.
[7] R. Frucht, A one-regular graph of degree three,Canadian J. Math.,4 (1952), 240–247. · Zbl 0046.40903
[8] C. D. Godsil, GRR’s for non-solvable groups,Proceedings of the conference on algebraic methods in combinatorics, Szeged (Hungary) 1978, Bolyai-North-Holland, 221–239.
[9] D. Gorenstein,Finite groups, Harper & Row, New York, (1968). · Zbl 0185.05701
[10] B. Huppert,Endliche Gruppen I, Springer Verlag, New York, (1967).
[11] W. Imrich andM. E. Watkins, On automorphism groups of Cayley Graphs,Per. Math. Hung.,7 (1976), 243–258. · Zbl 0351.05115
[12] D. S. Passman,Permutation Groups, W. A. Benjamin, New York, (1968).
[13] G. Sabidussi, Vertex-transitive graphs,Monat. Math.,68 (1964), 426–438. · Zbl 0136.44608
[14] J. Tate, Nilpotent quotient groups,Topology,3 (1964), 109–111. · Zbl 0125.01503
[15] M. E. Watkins, On the action of non-abelian groups on graphs,J. Combinatorial Theory,11 (1971), 95–104. · Zbl 0227.05108
[16] M. E. Watkins, Graphical regular representations of alternating, symmetric and miscellaneous small groups,Aequat. Math. 11 (1974), 40–50. · Zbl 0294.05114
[17] T. Yoshida, Character theoretic transfer,J. Algebra,52 (1978), 1–38. · Zbl 0399.20006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.