Burghelea, D.; Lashof, R. Geometric transfer and the homotopy type of the automorphism groups of a manifold. (English) Zbl 0489.57008 Trans. Am. Math. Soc. 269, 1-38 (1982). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 12 Documents MSC: 57R99 Differential topology 57R50 Differential topological aspects of diffeomorphisms 58D05 Groups of diffeomorphisms and homeomorphisms as manifolds 57T20 Homotopy groups of topological groups and homogeneous spaces 57Q60 Cobordism and concordance in PL-topology 57N70 Cobordism and concordance in topological manifolds 18F25 Algebraic \(K\)-theory and \(L\)-theory (category-theoretic aspects) Keywords:homotopy type of the groups of diffeomorphisms and homeomorphisms; spaces of imbeddings; group of pseudoisotopies; homotopy functor with values in category of infinite loop spaces; monoid of simple homotopy equivalences; Waldhausen’s algebraic K-theory of spaces; groups of automorphisms of compact manifolds; stability for concordances PDF BibTeX XML Cite \textit{D. Burghelea} and \textit{R. Lashof}, Trans. Am. Math. Soc. 269, 1--38 (1982; Zbl 0489.57008) Full Text: DOI References: [1] Peter L. Antonelli, Dan Burghelea, and Peter J. Kahn, The concordance-homotopy groups of geometric automorphism groups, Lecture Notes in Mathematics, Vol. 215, Springer-Verlag, Berlin-New York, 1971. · Zbl 0222.57001 [2] Dan Burghelea, Automorphisms of manifolds, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 347 – 371. [3] -, The structure of block automorphisms of \( M \times {S^1}\), Topology 16 (1977), 67-78. · Zbl 0344.57003 [4] -, The rational homotopy groups of \( \operatorname{Diff} (M)\) and \( \operatorname{Homeo} (M)\) in the stability range, Proc. Conf. Algebraic Topology (Aarhus, 1978), Lecture Notes in Math., vol. 763, Springer, Berlin and New York, pp. 604-626. [5] D. Burghelea and R. Lashof, Stability of concordances and the suspension homomorphism, Ann. of Math. (2) 105 (1977), no. 3, 449 – 472. · Zbl 0393.55009 · doi:10.2307/1970919 · doi.org [6] Dan Burghelea, Richard Lashof, and Melvin Rothenberg, Groups of automorphisms of manifolds, Lecture Notes in Mathematics, Vol. 473, Springer-Verlag, Berlin-New York, 1975. With an appendix (”The topological category”) by E. Pedersen. · Zbl 0307.57013 [7] A. E. Hatcher, Higher simple homotopy theory, Ann. of Math. (2) 102 (1975), no. 1, 101 – 137. · Zbl 0305.57009 · doi:10.2307/1970977 · doi.org [8] -, Concordance spaces, Proc. Sympos. Pure Math., vol. 32, Amer. Math. Soc., Providence, R. I., 1978. [9] W. C. Hsiang and B. Jahren, On the homotopy groups of the diffeomorphism groups of spherical space forms (preprint). · Zbl 0535.57015 [10] R. Lashof, Embedding spaces, Illinois J. Math. 20 (1976), no. 1, 144 – 154. · Zbl 0334.57017 [11] J. M. Boardman and R. M. Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics, Vol. 347, Springer-Verlag, Berlin-New York, 1973. J. P. May, The geometry of iterated loop spaces, Springer-Verlag, Berlin-New York, 1972. Lectures Notes in Mathematics, Vol. 271. · Zbl 0285.55012 [12] Friedhelm Waldhausen, Algebraic \?-theory of topological spaces. I, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 35 – 60. Friedhelm Waldhausen, Algebraic \?-theory of topological spaces. II, Algebraic topology, Aarhus 1978 (Proc. Sympos., Univ. Aarhus, Aarhus, 1978), Lecture Notes in Math., vol. 763, Springer, Berlin, 1979, pp. 356 – 394. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.