×

zbMATH — the first resource for mathematics

Discrete delay, distributed delay and stability switches. (English) Zbl 0492.34064

MSC:
34K20 Stability theory of functional-differential equations
34D20 Stability of solutions to ordinary differential equations
92B05 General biology and biomathematics
34A30 Linear ordinary differential equations and systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ansoff, H.I; Krumhansl, J.A, A general stability criterion for linear oscillating systems with constant time lag, Quart. appl. math., 6, 337-341, (1948) · Zbl 0033.18101
[2] Bellman, R; Cooke, K.L, Differential-difference equations, (1963), Academic Press New York · Zbl 0118.08201
[3] Brauer, F, Decay rates for solutions of a class of differential-difference equations, SIAM J. math. anal., 10, 783-788, (1979) · Zbl 0417.34114
[4] Brauer, F, Characteristic return times for harvested population models with time lag, Math. biosci., 45, 295-311, (1979) · Zbl 0412.92017
[5] Cushing, J.M, Integrodifferential equations and delay models in population dynamics, () · Zbl 0363.92014
[6] Cushing, J.M, Volterra integrodifferential equations in population dynamics, (), 81-148
[7] Datko, R, A procedure for determination of the exponential stability of certain differential-difference equations, Quart. appl. math., 36, 279-292, (1978) · Zbl 0405.34051
[8] Dieudonné, J, Foundations of modern analysis, (1960), Academic Press New York/London · Zbl 0100.04201
[9] Distefano, J.J; Stubbard, A.R; Williams, I.J, Feedback and control systems, ()
[10] El’sgol’ts, L.E, Introduction to the theory of differential equations with deviating arguments, (1973), Holden-Day San Francisco/London/Amsterdam, (R. J. McLaughlin, Trans.) · Zbl 0287.34073
[11] Fargue, D, Reductibilité des systèmes héréditaires à des systèmes dynamique (régis par des équations différentielles ou aux dérivées partielles), C. R. acad. sci. Paris Sér. B, 277, 471, (1973)
[12] Goodwin, B.C, (), 425
[13] Grossman, Z; Gumowski, I, Effect of pure delay on the dynamic properties of a second-order phase-lock loop, (), 271-278 · Zbl 0359.34067
[14] Grossman, Z; Gumowski, I, Self sustained oscillations in the jacob-monod model of gene regulation, (), 145-154
[15] Gumowski, I, Automatica J. IFAC, 10, 659, (1974)
[16] MacDonald, N, Time lags in biological models, () · Zbl 0403.92020
[17] MacDonald, N, Time delay in prey-predator models, Math. biosci., 28, 321-330, (1976) · Zbl 0324.92016
[18] Mees, A.I; Rapp, P.E, Oscillations in multi-loop feedback biochemical control networks, J. math. biol., 5, 99, (1978) · Zbl 0395.92014
[19] Minorsky, N, Self-excited oscillations in dynamical systems possessing retarded actions, J. appl. mech., 9, A65-A71, (1942)
[20] Minorsky, N, Experiments with activated tanks, Trans. ASME, 69, 735-747, (1947)
[21] Morris, H.C, A perturbative approach to periodic solutions of delay-differential equations, J. inst. math. appl., 18, 15-24, (1976) · Zbl 0346.34057
[22] Mufti, I.H, A note on the stability of an equation of third order with time lag, IEEE trans. automat. control, AC-9, 190-191, (1964)
[23] Ogata, K, State space analysis of control systems, (1967), Prentice-Hall Englewood Cliffs, N.J · Zbl 0178.09801
[24] Pinney, E, Ordinary difference-differential equations, (1958), Univ. of California Press Berkeley/Los Angeles · Zbl 0091.07901
[25] Tyson, J.J, Periodic enzyme synthesis: reconsideration of the theory of oscillatory repression, J. theoret. biol., 80, 27-38, (1979)
[26] Vogel, T, Systèmes évolutifs, (1965), Gauthier-Villars Paris · Zbl 0132.21701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.