Analytic structure of the Henon-Heiles Hamiltonian in integrable and nonintegrable regimes. (English) Zbl 0492.70019


70H05 Hamilton’s equations
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
Full Text: DOI


[1] M. Tabor, The Onset of Chaos in Dynamical Systems, Advances in Chemical Physics, Vol. 46 (Wiley, New York, 1981).
[2] M. J. Ablowitz, A. Ramani, and H. Segur, J. Math. Phys. 21, 715 (1980).JMAPAQ0022-2488
[3] S. Kowalevskaya, Acta Math. 14, 81 (1890); ACMAA80001-5962
[4] V. V. Golubov, Lectures on Integration of the Equations of Motion of a Rigid Body about a Fixed Point (State Publishing House, Moscow, 1953).
[5] H. Segur, ”Solitons and the Inverse Scattering Transform,” Lectures given at the International School of Physics, ’Enrico Fermi,’ Varenna, Italy, July 7–19, 1980.
[6] M. Tabor and J. Weiss, ”Analytical Structure of the Lorenz System,” Phys. Rev. A 24, 2157 (1981).PLRAAN1050-2947
[7] I. C. Percival and J. M. Green, ”Hamiltonian Maps in the Complex Plane,” Princeton Plasma Physics Laboratory Preprint, PPPL-1744 Jan. 1981 (unpublished).
[8] B. Mandelbrot, Fractals: Form, Chance and Dimension (Freeman, San Francisco, 1977). · Zbl 0376.28020
[9] M. Henon and C. Heiles, Astron. J. 69, 73 (1964).ANJOAA0004-6256
[10] Y. Aizawa and N. Saito, J. Phys. Soc. Jpn. 32, 1636 (1972).JUPSAU0031-9015
[11] John Greene, private communication. Noid, Koszykowski, and Marcus, J. Chem. Phys. 71, 2864 (1979), have shown this system to be separable in parabolic coordinates for the case A = 1, B = 2.JCPSA60021-9606
[12] T. Bountis, H. Segur, and F. Vivaldi, ”Integrable Hamiltonian Systems and the PainlevĂ© Property,” preprint (unpublished).
[13] Y. F. Chang, J. M. Green, M. Tabor, and J. Weiss, ”The Analytic Structure of Dynamical Systems and Self-Similar Natural Boundaries,” LJI Preprint LJI-R-81-152 (November, 1981).
[14] Y. F. Chang and G. Corliss, J. Inst. Math. Appl. 25, 349 (1980).JMTAA80020-2932
[15] Y. F. Chang, M. Tabor, J. Weiss, and G. Corliss, Phys. Lett. A 85, 211 (1981).PYLAAG0375-9601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.