×

zbMATH — the first resource for mathematics

Stein’s two-stage procedure and exact consistency. (English) Zbl 0493.62072

MSC:
62L12 Sequential estimation
62F25 Parametric tolerance and confidence regions
PDF BibTeX Cite
Full Text: DOI
References:
[1] DOI: 10.1002/nav.3800180305 · Zbl 0227.62049
[2] Basu D., Sankhyā 15 pp 377– (1955)
[3] DOI: 10.1214/aoms/1177705793 · Zbl 0094.14301
[4] DOI: 10.1214/aoms/1177700156 · Zbl 0142.15601
[5] DOI: 10.2307/2285519 · Zbl 0285.62027
[6] Folks J. L., Journal of Royal Statistical Society, Series B 40 pp 263– (1978)
[7] Ghosh B. K., Journal ofRoyal Statistical Society, Series B 35 pp 480– (1973)
[8] Ghosh M., Consistency and asymptotic efficiency of two stage and sequential estimation procedures (1981) · Zbl 0509.62069
[9] Johnson N. L., Distributions in statistics: Continuous univariate distributions 2 (1970) · Zbl 0213.21101
[10] Lehmann E. L., Notes on the theory of estimation (1950)
[11] Lehmann E. L., Testing statistical hypotheses (1959) · Zbl 0089.14102
[12] Mukhopadhyay N., Calcutta Statistical Association Bulletin 23 pp 85– (1974) · Zbl 0342.62058
[13] DOI: 10.1007/BF01893607 · Zbl 0449.62028
[14] Neyman J., Philosophical Transactions of Royal Society, London 236 pp 333– (1937) · Zbl 0017.12403
[15] DOI: 10.2307/2282079 · Zbl 0099.14002
[16] DOI: 10.1002/9780470316436 · Zbl 0256.62002
[17] DOI: 10.1214/aoms/1177698024 · Zbl 0187.15805
[18] DOI: 10.1214/aoms/1177731088 · Zbl 0060.30403
[19] Stein C., Abstract in Econometrics 17 pp 77– (1949)
[20] Zacks S., The theory of statistical inference (1971)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.