Rudin, Walter Function theory in the unit ball of \({\mathbb{C}}^ n\). (English) Zbl 0495.32001 Grundlehren der mathematischen Wissenschaften, Bd. 241. New York, Heidelberg, Berlin: Springer-Verlag. XIII, 436 p. DM 79.50; $ 46.90 (1980). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 27 ReviewsCited in 878 Documents MSC: 32-02 Research exposition (monographs, survey articles) pertaining to several complex variables and analytic spaces 32A10 Holomorphic functions of several complex variables 32A40 Boundary behavior of holomorphic functions of several complex variables 32A38 Algebras of holomorphic functions of several complex variables 32A22 Nevanlinna theory; growth estimates; other inequalities of several complex variables 32A25 Integral representations; canonical kernels (Szegő, Bergman, etc.) 32A35 \(H^p\)-spaces, Nevanlinna spaces of functions in several complex variables 32E35 Global boundary behavior of holomorphic functions of several complex variables 32U05 Plurisubharmonic functions and generalizations 32W05 \(\overline\partial\) and \(\overline\partial\)-Neumann operators 32M05 Complex Lie groups, group actions on complex spaces 32H99 Holomorphic mappings and correspondences Keywords:unit ball; zero-varieties; algebra of holomorphic functions; uniqueness theorem; invariant kernels; invariant Laplacian; growth; boundary behaviour; Hp; Schwarz lemma; peak; interpolation; null set; Bochner- Martinelli kernel; delta equation; d-bar-equation; tangential Cauchy Riemann operators; harmonic functions; analytic varieties; PI-set PDF BibTeX XML