An analogue of a Hardy-Littlewood-Fejer inequality for upper triangular trace class operators. (English) Zbl 0495.47027


47L30 Abstract operator algebras on Hilbert spaces
47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
46L51 Noncommutative measure and integration
46L53 Noncommutative probability and statistics
46L54 Free probability and free operator algebras
Full Text: DOI EuDML


[1] Arazy, J., Lindenstrauss, J.: Some linear topological properties of the spacesC p of operators on Hilbert space. Compositio Math.30, 81-111 (1975) · Zbl 0302.47034
[2] Arveson, W.: Interpolation problems in nest algebras. J. Functional Anal.20, 208-233 (1975) · Zbl 0309.46053
[3] Bennett, G.: Schur multipliers. Duke Math. J.44, 603-639 (1977) · Zbl 0389.47015
[4] Dunford, N., Schwartz, J.: Linear operators, Part II: Spectral Theory. New York: Interscience 1963 · Zbl 0128.34803
[5] Duren, P.L.: Theory ofH p spaces. New York-London: Academic Press 1970 · Zbl 0215.20203
[6] Fej?r, L.: ?ber gewisse Minimumprobleme der Funktionentheorie. Math. Ann.97, 104-123 (1927) · JFM 52.0310.01
[7] Garnett, J.: Bounded Analytic Functions. New York-London: Academic Press 1981 · Zbl 0469.30024
[8] Gohberg, I.C., Kre?n, M.G.: Introduction to the theory of linear non-selfadjoint operators in Hilbert space. Moscow: Izdat’elstvo Nauka 1965 [Russian]; English transl.: Translations of Mathematical Monographs18. Providence, Rhode Island: Amer. Math. Soc. 1969 · Zbl 0138.07803
[9] Gohberg, I.C., Kre?n, M.G.: Theory of Volterra operators on Hilbert space and its applications. Moscow: Izdatel’stvo Nauka 1967 [Russian]; English transl. translations of Mathematical Monographs24. Providence, Rhode Island: Amer. Math. Soc. 1970
[10] Halmos, P.R.: Finite dimensional vector spaces, second edition. Princeton-Toronto-London: Van Nostrand 1958 · Zbl 0107.01404
[11] Halmos, P.R.: A Hilbert space problem book. Princeton-Toronto-London: Van Nostrand 1967 · Zbl 0144.38704
[12] Hardy, G.H., Littlewood, J.E.: Some new properties of Fourier constants. Math. Ann.97, 159-209 (1926) · JFM 52.0267.01
[13] Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities. second edition, Cambridge University Press, 1954
[14] Hoffman, K.: Banach spaces of analytic functions. Englewood Cliffs, New Jersey: Prentice-Hall, 1962 · Zbl 0117.34001
[15] Kahan, W.: Everyn?n matrixZ with real spectrum satisfies ?Z?Z*? ? ? Z + Z*?(log2n + 0.038). Proc. Amer. Math. Soc.39, 235-241 (1973) · Zbl 0258.15013
[16] Kwapie?, S., Pe?czynski, A.: The main triangle projection in matrix spaces and its applications. Studia Math.34, 43-68 (1970)
[17] Larson, D.: Nest algebras and similarity transformations. Preprint · Zbl 0606.47045
[18] Macaev, V.I.: Volterra operators obtained from self-adjoint operators by perturbation. Dokl. Akad. Nauk SSSR139, 810-813 (1961) [Russian]; English transl. Soviet Math. Dokl.2, 1013-1016 (1961)
[19] McCarthy, C.A.:C p.Israel J. Math.5, 249-271 (1967) · Zbl 0156.37902
[20] Ortega, J.M.: Numerical analysis, a second course. New York-London: Academic Press 1972 · Zbl 0248.65001
[21] Redheffer, R., Volkmann, P.: On Schur’s generalization of Hilbert’s inequality. Preprint · Zbl 0512.26009
[22] Redheffer, R., Volkmann, P.: ?ber eine Ungleichung von Schur. Preprint · Zbl 0499.15008
[23] Schatten, R.: Norm ideals of completely continuous operators. Berlin-Heidelberg-New York: Springer 1960 · Zbl 0090.09402
[24] Schur, I.: Bemerkungen zur Theorie der beschr?nkten Bilinearformen mit unendlich vielen Ver?nderlichen. J. Reine Angew. Math.110, 1-28 (1911) · JFM 42.0367.01
[25] Styan, G.P.H.: Hadamard products and multivariate statistical analysis. Linear Algebra Appl.6, 217-240 (1973) · Zbl 0255.15002
[26] Wilkinson, J.H.: The algebraic eigenvalue problem. Oxford: Clarendon Press 1965 · Zbl 0258.65037
[27] Zygmund, A.: Trigonometric series, second edition. Cambridge: Cambridge University Press 1959 · Zbl 0085.05601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.