×

zbMATH — the first resource for mathematics

Some aspects of groups acting on finite posets. (English) Zbl 0496.06001

MSC:
06A06 Partial orders, general
20B25 Finite automorphism groups of algebraic, geometric, or combinatorial structures
05A10 Factorials, binomial coefficients, combinatorial functions
06E05 Structure theory of Boolean algebras
05A17 Combinatorial aspects of partitions of integers
05A15 Exact enumeration problems, generating functions
51D25 Lattices of subspaces and geometric closure systems
05B35 Combinatorial aspects of matroids and geometric lattices
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Andrews, G.E, The theory of partitions, (1976), Addison-Wesley Reading, Mass · Zbl 0371.10001
[2] Baclawski, K, Cohen-Macaulay ordered sets, J. algebra, 63, 226-258, (1980) · Zbl 0451.06004
[3] \scK. Baclawski, Cohen-Macaulay connectivity and geometric lattices, preprint. · Zbl 0504.06005
[4] Baclawski, K; Björner, A, Fixed points in partially ordered sets, Advances in math., 31, 263-287, (1979) · Zbl 0417.06002
[5] Birkhoff, G, Lattice theory, (1967), American Mathematical Society Providence, R.I · Zbl 0126.03801
[6] Björner, A, Shellable and Cohen-Macaulay partially ordered sets, Trans. amer. math. soc., 260, 159-183, (1980) · Zbl 0441.06002
[7] \scA. Björner, On the homology of geometric lattices, Algebra Universalis, to appear.
[8] Comtet, L, Advanced combinatorics, (1974), Reidel Boston
[9] Dembowski, P, Finite geometries, (1968), Springer-Verlag Berlin/Heidelberg/New York · Zbl 0159.50001
[10] Folkman, J, The homology groups of a lattice, J. math. mech., 15, 631-636, (1966) · Zbl 0146.01602
[11] Foody, W; Hedayat, A, On theory and applications of BIB designs with repeated blocks, Ann. statist., 5, 932-945, (1977) · Zbl 0368.62054
[12] Garst, P.F, Cohen-Macaulay complexes and group actions, ()
[13] Geissinger, L; Kinch, D, Representations of the hyperoctahedral groups, J. algebra, 53, 1-20, (1978) · Zbl 0379.20007
[14] Graham, R.L; Li, S.-Y.R; Li, W.-C.W, On the structure of t-designs, SIAM J. algebraic discrete meth., 1, 8-14, (1980) · Zbl 0499.05012
[15] Hall, M, The theory of groups, (1959), Macmillan Co New York
[16] Hanlon, P, The fixed-point partition lattices, Pacific J. math., 96, 319-341, (1981) · Zbl 0474.06012
[17] Hardy, G.H; Wright, E.M, An introduction to the theory of numbers, (1960), Oxford Univ. Press London · Zbl 0086.25803
[18] Kantor, W.M, On incidence matrices of finite projective and affine spaces, Math. Z., 124, 315-318, (1972) · Zbl 0228.50022
[19] Knuth, D, ()
[20] Kazhdan, D; Lusztig, G, Representations of Coxeter groups and Hecke algebras, Invent. math., 53, 165-184, (1979) · Zbl 0499.20035
[21] Lusztig, G, The discrete series of GLn over a finite field, (1974), Princeton Univ. Press Princeton, N.J
[22] \scJ. Munkres, Topological results in combinatorics, preprint. · Zbl 0585.57014
[23] \scA. M. Odlyzko and B. Richmond, On the unimodality of some partition polynomials, preprint. · Zbl 0482.10015
[24] \scR. Proctor, Solution of two difficult combinatorial problems with linear algebra, Amer. Math. Monthly, to appear. · Zbl 0509.05007
[25] Rota, G.-C, On the foundations of combinatorial theory, I. theory of Möbius functions, Z. wahrsch. verw. gebiete, 2, 340-368, (1964) · Zbl 0121.02406
[26] Schensted, C, Longest increasing and decreasing subsequences, Canad. J. math., 13, 179-191, (1961) · Zbl 0097.25202
[27] Schützenberger, M.P, Quelques remarques sur une construction de Schensted, Math. scand., 12, 117-128, (1963) · Zbl 0216.30202
[28] Solomon, L, The orders of the finite Chevalley groups, J. algebra, 3, 376-393, (1966) · Zbl 0151.02003
[29] Solomon, L, A decomposition of the group algebra of a finite Coxeter group, J. algebra, 9, 220-239, (1968) · Zbl 0186.04503
[30] Stanley, R, Finite lattices and Jordan-Hölder sets, Algebra universalis, 4, 361-371, (1974) · Zbl 0303.06006
[31] Stanley, R, Balanced Cohen-Macaulay complexes, Trans. amer. math. soc., 249, 361-371, (1979) · Zbl 0411.05012
[32] Stanley, R, Unimodal sequences arising from Lie algebras, (), 127-136
[33] Stanley, R, Weyl groups, the hard Lefschetz theorem, and the sperner property, SIAM J. algebraic and discrete meth., 1, 168-184, (1980) · Zbl 0502.05004
[34] Steinberg, R, A geometric approach to the representation of the full linear group over a Galois field, Trans. amer. math. soc., 71, 274-282, (1951) · Zbl 0045.30201
[35] White, D, Monotonicity and unimodality of the pattern inventory, Advances in math., 38, 101-108, (1980) · Zbl 0459.05010
[36] James, G; Kerber, A, The representation theory of the symmetric group, (1981), Addison-Wesley Reading, Mass
[37] Robinson, G.de B, Representation theory of the symmetric group, (1961), Univ. of Toronto Press Toronto
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.