×

zbMATH — the first resource for mathematics

Quasiconcave vector maximization: Connectedness of the sets of Pareto- optimal and weak Pareto-optimal alternatives. (English) Zbl 0496.90073

MSC:
90C31 Sensitivity, stability, parametric optimization
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Naccache, P. H.,Connectedness of the Set of Nondominated Outcomes in Multicriteria Optimization, Journal of Optimization Theory and Applications, Vol. 25, pp. 459-467, 1978. · Zbl 0363.90108 · doi:10.1007/BF00932907
[2] Bitran, G. R., andMagnanti, T. L.,The Structure of Admissible Points with respect to Cone Dominance, Journal of Optimization Theory and Applications, Vol. 29, pp. 573-614, 1979. · Zbl 0389.52021 · doi:10.1007/BF00934453
[3] Yu, P. L., andZeleny, M.,The Set of All Nondominated Solutions in Linear Cases and the Multicriteria Simplex Method, Journal of Optimization Theory and Applications, Vol. 19, pp. 430-460, 1975. · Zbl 0313.65047
[4] Choo, E. U., andAtkins, D. R.,Connectedness in Multiple Criteria Linear Fractional Programming, Management Science (to appear). · Zbl 0519.90082
[5] Schaible, S.,Fractional Programming: Applications and Algorithms, European Journal of Operational Research, Vol. 7, pp. 111-120, 1981. · Zbl 0452.90079 · doi:10.1016/0377-2217(81)90272-1
[6] Ashton, D., andAtkins, D.,Multicriteria Programming for Financial Planning, Journal of the Operational Research Society, Vol. 3, pp. 259-270, 1979. · Zbl 0393.90048
[7] Kornbluth, J., andSteuer, R.,Multiple-Objective Linear Fractional Programming, Management Science, Vol. 27, pp. 1024-1039, 1981. · Zbl 0467.90064 · doi:10.1287/mnsc.27.9.1024
[8] Geoffrion, A. M., Dyer, J. S., andFeinberg, A.,An Interactive Approach for Multi-Criterion Optimization with an Application to the Operation of an Academic Department, Management Science, Vol. 19, pp. 357-368, 1972. · Zbl 0247.90069 · doi:10.1287/mnsc.19.4.357
[9] Warburton, A. R.,Topics in Multiple Criteria Optimization, University of British Columbia, Vancouver, Canada, Faculty of Commerce and Business Administration, PhD Thesis, 1981.
[10] Hildenbrand, W., andKirman, A. P.,Introduction to Equilibrium Analysis, American Elsevier Publishing Company, New York, New York, 1976. · Zbl 0345.90004
[11] Bowman, V. J.,On the Relationship of the Tchebycheff Norm and the Efficient Frontier of Multiple-Criteria Objectives, Multiple Criteria Decision Making, Edited by S. Zionts and H. Thiriez, Springer-Verlag, Berlin, 1975.
[12] Avriel, M.,Generalized Concavity, Proceedings of the NATO Advanced Study Institute on Generalized Concavity in Optimization and Economics, University of British Columbia, Vancouver, Canada, 1980 (to appear).
[13] Zang, I.,Concavifiability of C 2 Functions: A Unified Approach, Proceedings of the NATO Advanced Study Institute on Generalized Concavity in Optimization and Economics, University of British Columbia, Vancouver, Canada, 1980 (to appear).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.