×

zbMATH — the first resource for mathematics

The elimination matrix: Some lemmas and applications. (English) Zbl 0497.15014

MSC:
15B57 Hermitian, skew-Hermitian, and related matrices
65F05 Direct numerical methods for linear systems and matrix inversion
15A06 Linear equations (linear algebraic aspects)
15A04 Linear transformations, semilinear transformations
62H12 Estimation in multivariate analysis
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Anderson, T. W., An introduction to multivariate statistical analysis, (1958) · Zbl 0083.14601
[2] Balestra, P., La dérivation matricielle, (1976) · Zbl 0453.90001
[3] Browne, M., Generalized least squares estimators in the analysis of covariance structures, South African Statist. J., 8, 1, (1974) · Zbl 0281.62071
[4] Conlisk, J., The equilibrium covariance matrix of dynamic econometric models, J. Amer. Statist. Assoc., 64, 277, (1969)
[5] Deemer, WalterL.; Olkin, Ingram, The Jacobians of certain matrix transformations useful in multivariate analysis, Biometrika, 38, 345, (1951) · Zbl 0043.34204
[6] Henderson, HaroldV.; Searle, S. R., \({\rm Vec}\) and \({\rm vech}\) operators for matrices, with some uses in Jacobians and multivariate statistics, Canad. J. Statist., 7, 65, (1979) · Zbl 0435.15022
[7] Jack, Henry, Jacobians of transformations involving orthogonal matrices, Proc. Roy. Soc. Edinburgh Sect. A, 67, 81, (19641965) · Zbl 0133.26203
[8] Magnus, JanR.; Neudecker, H., The commutation matrix: some properties and applications, Ann. Statist., 7, 381, (1979) · Zbl 0414.62040
[9] Nel, D. G., On the symmetric multivariate normal distribution and the asymptotic expansion of a Wishart matrix, South African Statist. J., 12, 145, (1978) · Zbl 0396.62036
[10] Neudecker, H., Some theorems on matrix differentiation with special reference to Kronecker matrix products, J. Amer. Statist. Assoc., 64, 953, (1969) · Zbl 0179.33102
[11] Olkin, Ingram, Note on ‘the Jacobians of certain matrix transformations useful in multivariate analysis’, Biometrika, 40, 43, (1953) · Zbl 0052.14904
[12] Olkin, Ingram; Sampson, AllanR., Jacobians of matrix transformations and induced functional equations, Linear Algebra and Appl., 5, 257, (1972) · Zbl 0241.15003
[13] Penrose, R., A generalized inverse for matrices, Proc. Cambridge Philos. Soc., 51, 406, (1955) · Zbl 0065.24603
[14] Rao, C. Radhakrishna, Linear statistical inference and its applications, (1973) · Zbl 0256.62002
[15] Richard, Jean-François, A note on the information matrix of the multivariate normal distribution, J. Econometrics, 3, 57, (1975) · Zbl 0315.62015
[16] Tracy, DerrickS.; Dwyer, PaulS., Multivariate maxima and minima with matrix derivatives, J. Amer. Statist. Assoc., 64, 1576, (1969)
[17] Tracy, D. S.; Singh, R. P.; Tracy, D. S., Some modifications of matrix differentiation for evaluating Jacobians of symmetric matrix transformations, Symmetric functions in statistics (Proc. Sympos. in Honor of Paul S. Dwyer, Univ. Windsor, Windsor, Ont., 1971), 203, (1972), Univ. Windsor, Windsor, Ont. · Zbl 0276.15011
[18] Vetter, WilliamJ., Vector structures and solutions of linear matrix equations, Linear Algebra and Appl., 10, 181, (1975) · Zbl 0307.15003
[19] Zellner, Arnold, An introduction to Bayesian inference in econometrics, (1971) · Zbl 0246.62098
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.