×

zbMATH — the first resource for mathematics

Quantum version of the method of inverse scattering problem. (English) Zbl 0497.35072

MSC:
35P25 Scattering theory for PDEs
81T08 Constructive quantum field theory
81U20 \(S\)-matrix theory, etc. in quantum theory
35J10 Schrödinger operator, Schrödinger equation
35Q99 Partial differential equations of mathematical physics and other areas of application
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Theory of Solitons: Method of the Inverse Problem [in Russian], Nauka, Moscow (1980). · Zbl 0598.35002
[2] C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, ?Method for solving the Korteweg-de Vries equation,? Phys. Rev. Lett.,19, 1095?1097 (1967). · Zbl 1061.35520 · doi:10.1103/PhysRevLett.19.1095
[3] P. D. Lax, ?Integrals of nonlinear evolutional equations and isolated waves,? Matematika (collection of translations of foreign papers),13, No. 5, 128?150 (1967).
[4] V. E. Zakharov and L. D. Faddeev, ?Korteweg-de Vries equation ?completely integrable Hamiltonian system,? Funkts. Anal. Prilozhen.,5, No. 4, 18?27 (1971). · Zbl 0257.35074
[5] H. Bethe, ?Zur Theorie der Metalle. I. Eigenwerte und Eigenfunctionen der linearen Atomkette,? Z. Phys.,71, 205?226 (1931). · JFM 57.1587.01 · doi:10.1007/BF01341708
[6] L. Onsager, ?Crystal statistics. I. A two-dimensional model with an order-disorder transition,? Phys. Rev.,65 (1944). · Zbl 0060.46001
[7] R. J. Baxter, ?Partition function of the eight-vertex lattice model,? Ann. Phys.,70, No. 1, 193?288 (1972). · Zbl 0236.60070 · doi:10.1016/0003-4916(72)90335-1
[8] R. J. Baxter, ?One-dimensional anisotropic Heisenberg chain,? Ann. Phys.,70, No. 2, 323?337 (1972). · doi:10.1016/0003-4916(72)90270-9
[9] V. E. Zahkarov, L. A. Takhtadzhyan, and L. D. Faddeev, ?Complete description of solutions of the ?sin-Gordon? equation,? Dokl. Akad. Nauk SSSR,219, No. 6, 1334?1337 (1974).
[10] V. E. Zakharov and A. V. Mikhailov, ?Relativistically invariant two-dimensional models of the theory of fields, integrable by the method of the inverse problem,? Zh. Eksp. Teor. Fiz.,74, No. 6, 1953?1973 (1978).
[11] P. P. Kulish, S. V. Manakov, and L. D. Faddeev, ?Comparison of exact quantum and quasiclassical answers for the nonlinear Schrödinger equation,? Teor. Mat. Fiz.,28, No. 1, 38?45 (1976). · doi:10.1007/BF01028912
[12] L. D. Faddeev and V. E. Korepin, ?Quantum theory of solitons,? Phys. Reports,42C, No. 1, 1?87 (1978). · doi:10.1016/0370-1573(78)90058-3
[13] E. K. Sklyanin and L. D. Faddeev, ?Quantum mechanical approach to completely integrable models of field theory,? Dokl. Akad. Nauk SSSR,243, No. 6, 1430?1433 (1978).
[14] E. K. Sklyanin, ?Method of the inverse scattering problem and quantum nonlinear Schrödinger equation,? Dokl. Akad. Nauk SSSR,244, No. 6, 1337?1341 (1978).
[15] E. K. Sklyanin, ?Quantum version of the method of the inverse scattering problem,? Candidates Dissertation, Leningrad Branch of the Mathematics Institute (1980).
[16] L. D. Faddeev, ?Quantum completely integrable models of field theory,? in: Problems of Quantum Field Theory (Memoirs of the International Conference on Nonlocal Field Theories, Alushta, 1979) [in Russian], Dubna (1979), pp. 249?299. · Zbl 0443.35078
[17] E. K. Sklyanin, L. A. Takhtadzhyan, and L. D. Faddeev, ?Quantum method of the inverse problem I,? Teor. Mat. Fiz.,40, No. 2, 194?220 (1979). · Zbl 1138.37331 · doi:10.1007/BF01018718
[18] P. P. Kulish and E. K. Sklyanin, ?Quantum inverse scattering method and the Heisenberg ferromagnet,? Phys. Lett. A,70, Nos. 5?6, 461?463 (1979). · doi:10.1016/0375-9601(79)90365-7
[19] L. A. Takhtadzhyan and L. D. Faddeev, ?Quantum method of the inverse problem and the XYZ-model of Heisenberg,? Usp. Mat. Nauk,34, No. 5, 13?63 (1979).
[20] P. P. Kulish, ?Generalized Bethe Ansatz and the quantum method of the inverse problem,? Preprint Leningrad Branch of the Mathematics Institute P-3-79, Leningrad (1979). · Zbl 0443.35058
[21] P. P. Kulish and N. Yu. Reshetikhin, ?Generalized Heisenberg ferromagnet and the Groos-Neveu model,? Preprint Leningrad Branch of the Mathematics Institute E-4-79, Leningrad (1979).
[22] H. B. Thacker and D. Wilkinson, ?The inverse scattering transform as an operator method in quantum field theory,? Phys. Rev.,D19, No. 12, 3660?3665 (1979). · Zbl 1267.81289
[23] D. B. Creamer, H. B. Thacker, and D. Wilkinson, ?Gelfand-Levitan method for operator fields,? Preprint Fermilab-Pub-79/75-THY, September, 1979.
[24] D. B. Creamer, H. B. Thacker, and D. Wilkinson, ?Quantum Gelfand-Levitan method as a generalized Jordan-Wigner transformation,? Fermilab-Pub-80/17-THY, January, 1980.
[25] D. B. Creamer, H. B. Thacker, and D. Wilkinson, ?Statistical mechanics of an exactly integrable system,? Fermilab-Pub-80/25-THY, February, 1980.
[26] J. Hönerkamp, P. Weber, and A. Wiesler, ?On the connection between the inverse transform method and the exact quantum eigenstates,? Nucl. Phys.,B152, No. 2, 266 (1979). · doi:10.1016/0550-3213(79)90103-2
[27] A. Wiesler, ?Rigorous proof of ?Bethe’s hypothesis? from inverse scattering transformation,? Preprint. Univ. Freiburg THEP 79/8, October, 1979.
[28] H. Grosse, ?On the construction of Möller operators for the nonlinear Schrödinger equation,? Phys. Lett.,86B, Nos. 3?4, 267?271 (1979). · doi:10.1016/0370-2693(79)90835-9
[29] E. K. Sklyanin, ?On complete integrability of the Landau-Lifshits equation,? Preprint, Leningrad Branch of the Mathematics Institute, E-3-79, Leningrad (1979).
[30] V. E. Zakharov and S. V. Manakov, ?Complete integrability of the nonlinear Schrödinger equation,? Teor. Mat. Fiz.,19, No. 3, 332?343 (1974). · Zbl 0298.35016 · doi:10.1007/BF01035568
[31] V. E. Zakharov and A. B. Shabat, ?Exact theory of two-dimensional self-focusing and one-dimensional automodulation of waves in nonlinear media,? Zh. Eksp. Teor. Fiz.,61, No. 1, 118?134 (1971).
[32] L. A. Takhtadzhyan, ?Hamiltonian systems connected with Dirac’s equation,? Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst.,37, 66?76 (1973).
[33] F. A. Berezin, G. P. Pokhil, and V. M. Finkel’berg, ?Schrödinger’s equation for systems of one-dimensional particles with pointwise interactions,? Vestn. Mosk. Gos. Univ., Ser. Mat., Mekh., No. 1, 21?28 (1964).
[34] J. B. McGuire, ?Study of exactly soluble one-dimensional N-body problem,? J. Math. Phys.,5, No. 5, 622 (1964). · Zbl 0131.43804 · doi:10.1063/1.1704156
[35] I. M. Gel’fand and L. A. Dikii, ?Resolvent and Hamiltonian systems,? Funkts. Anal.,11, No. 2, 11?27 (1977).
[36] F. A. Berezin, Method of Secondary Quantization [in Russian], Nauka, Moscow (1965). · Zbl 0131.44805
[37] A. S. Shvarts, Mathematical Foundations of Quantum Field Theory [in Russian], Atomizdat, Moscow (1975).
[38] A. A. Tsvetkov, ?Integrals of motion of a system of bosons with pointwise interactions,? Vestn. Mosk. Gos. Univ., Ser. Mat., Mekh., No. 4, 61?69 (1977).
[39] F. A. Berezin, ?Quantization,? Izv. Akad. Nauk SSSR, Ser. Mat.,38, No. 5, 1116?1175 (1974).
[40] F. A. Berezin, ?Wick and anti-Wick symbols of operators,? Mat. Sb.,86 (128), No. 4 (12), 578?610 (1971). · Zbl 0247.47018
[41] Yu. S. Tyupkin, V. A. Fateev, and A. S. Shvarts, ?Connection of particle-similar solutions of classical equations with quantum particles,? Yad. Fiz.,22, No. 3, 622?631 (1975).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.